
1IEEE SIGNAL PROCESSING MAGAZINE

Digital Object Identifier 10.1109/MSP.2019.2931595

1053-5888/19©2019IEEE. Personal use is permitted, but republication/redistribution requires ieee permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 1

Surrogate Gradient Learning in Spiking

Neural Networks
Emre O. Neftci†, Member, IEEE, Hesham Mostafa† Friedemann Zenke†

† All authors contributed equally. The order of authors is arbitrary.

Abstract

Spiking neural networks are nature’s versatile solution to fault-tolerant and energy efficient

signal processing. To translate these benefits into hardware, a growing number of neuromorphic

spiking neural network processors attempt to emulate biological neural networks. These develop-

ments have created an imminent need for methods and tools to enable such systems to solve real-

world signal processing problems. Like conventional neural networks, spiking neural networks

can be trained on real, domain specific data. However, their training requires overcoming a

number of challenges linked to their binary and dynamical nature. This article elucidates step-

by-step the problems typically encountered when training spiking neural networks, and guides

the reader through the key concepts of synaptic plasticity and data-driven learning in the spiking

setting. To that end, it gives an overview of existing approaches and provides an introduction

to surrogate gradient methods, specifically, as a particularly flexible and efficient method to

overcome the aforementioned challenges.

I. INTRODUCTION

Biological spiking neural networks (SNNs) are evolution’s highly efficient solution to the

problem of signal processing. Therefore, taking inspiration from the brain is a natural approach

to engineering more efficient computing architectures. In the area of machine learning, recurrent

neural networks (RNNs), a class of stateful neural networks whose internal state evolves with

time (Box. 1), have proven highly effective at solving real-time pattern recognition and noisy time

series prediction problems [1]. RNNs and biological neural networks share several properties, such

as a similar general architecture, temporal dynamics and learning through weight adjustments.

Based on these similarities, a growing body of work is now establishing formal equivalences

2 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 2

between RNNs and networks of spiking leaky integrate-and-fire (LIF) neurons which are widely

used in computational neuroscience [2–5].

RNNs are typically trained using an optimization procedure in which the parameters or weights

are adjusted to minimize a given objective function. Efficiently training large-scale RNNs is

challenging due to a variety of extrinsic factors, such as noise and non-stationarity of the data,

but also due to the inherent difficulties of optimizing functions with long-range temporal and

spatial dependencies. In SNNs and binary RNNs, these difficulties are compounded by the non-

differentiable dynamics implied by the binary nature of their outputs. While a considerable body

of work has successfully demonstrated training of two-layer SNNs [6–8] without hidden units,

and networks with recurrent synaptic connections [9, 10], the ability to train deeper SNNs with

hidden layers has remained a major obstacle. Because hidden units and depth are crucial to

efficiently solve many real-world problems, overcoming this obstacle is vital.

As network models grow larger and make their way into embedded and automotive applications,

their power efficiency becomes increasingly important. Simplified neural network architectures

that can run natively and efficiently on dedicated hardware are now being devised. This includes,

for instance, networks of binary neurons or neuromorphic hardware that emulate the dynamics

of SNNs [11]. Both types of networks dispense with energetically costly floating-point multipli-

cations, making them particularly advantageous for low-power applications compared to neural

networks executed on conventional hardware.

These new hardware developments have created an imminent need for tools and strategies

enabling efficient inference and learning in SNNs and binary RNNs. In this article, we discuss

and address the inherent difficulties in training SNNs with hidden layers, and introduce various

strategies and approximations used to successfully implement them1.

II. UNDERSTANDING SNNS AS RNNS

We start by formally mapping SNNs to RNNs. Formulating SNNs as RNNs will allow us to

directly transfer and apply existing training methods for RNNs and will serve as the conceptual

framework for the rest of this article.

Before we proceed, one word on terminology. We use the term RNNs in its widest sense to

refer to networks whose state evolves in time according to a set of recurrent dynamical equations.

1A repository containing tutorials for surrogate gradient learning in spiking neural networks can be found here:
https://github.com/snn-tutorials/surrogate-gradients

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 3

Such dynamical recurrence can be due to the explicit presence of recurrent synaptic connections

between neurons in the network. This is the common understanding of what a RNN is. But

importantly, dynamical recurrence can also arise in the absence of recurrent connections. This

happens, for instance, when stateful neuron or synapse models are used which have internal

dynamics. Because the network’s state at a particular time step recurrently depends on its state

in previous time steps, these dynamics are intrinsically recurrent. In this article, we use the

term RNN for networks exhibiting either, or both types of recurrence. Moreover, we introduce

the term recurrently connected neural network (RCNN) for the subset of networks with explicit

recurrent synaptic connections. We will now describe the mathematical treatment of RCNNs ,

which closely resembles that of RNNs.

To this end, we will first introduce the LIF neuron model with current-based synapses which

has wide use in computational neuroscience [12]. Next, we will reformulate this model in discrete

time and show its formal equivalence to a RNN with binary activation functions. Readers familiar

with the LIF neuron model can skip the following steps up to Equation (5).

Box 1: Recurrent neural networks (RNNs)

x[n]

a(1)[n]

y(1)[n]

a(2)[n]

y(2)[n]

W(0)

W(1)

V(1)

V(2)

RNNs are networks of inter-connected units, or neurons in which the network state at
any point in time a[n] is a function of both external input x[n] and the network’s state
at the previous time point a[n − 1]. One popular RNN structure arranges neurons in
multiple layers where every layer is recurrently connected and also receives input from
the previous layer. More precisely, the dynamics of a network with L layers is given by:

y(l)[n] =σ(a(l)[n]) for l = 1, . . . , L

a(l)[n] =V(l)y(l)[n− 1] +W(l)y(l−1)[n− 1] for l = 1, . . . , L

y(0)[n] ≡x[n]

where a(l)[n] is the state vector of the neurons at layer l, σ is an activation function, and
V(l) and W(l) are the recurrent and feedforward weight matrices of layer l, respectively.
External inputs x[n] typically arrive at the first layer. Non-scalar quantities are typeset
in bold face.

A LIF neuron in layer l with index i can formally be described in differential form as

τmem
dU

(l)
i

dt
= −(U

(l)
i − Urest) +RI

(l)
i (1)

where U
(l)
i (t) is the membrane potential, Urest is the resting potential, τmem is the membrane

time constant, R is the input resistance, and Ii(t) is the input current [12]. Equation (1) shows

that U (l)
i acts as a leaky integrator of the input current I(l)i . Neurons emit spikes to communicate

3IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 3

Such dynamical recurrence can be due to the explicit presence of recurrent synaptic connections

between neurons in the network. This is the common understanding of what a RNN is. But

importantly, dynamical recurrence can also arise in the absence of recurrent connections. This

happens, for instance, when stateful neuron or synapse models are used which have internal

dynamics. Because the network’s state at a particular time step recurrently depends on its state

in previous time steps, these dynamics are intrinsically recurrent. In this article, we use the

term RNN for networks exhibiting either, or both types of recurrence. Moreover, we introduce

the term recurrently connected neural network (RCNN) for the subset of networks with explicit

recurrent synaptic connections. We will now describe the mathematical treatment of RCNNs ,

which closely resembles that of RNNs.

To this end, we will first introduce the LIF neuron model with current-based synapses which

has wide use in computational neuroscience [12]. Next, we will reformulate this model in discrete

time and show its formal equivalence to a RNN with binary activation functions. Readers familiar

with the LIF neuron model can skip the following steps up to Equation (5).

Box 1: Recurrent neural networks (RNNs)

x[n]

a(1)[n]

y(1)[n]

a(2)[n]

y(2)[n]

W(0)

W(1)

V(1)

V(2)

RNNs are networks of inter-connected units, or neurons in which the network state at
any point in time a[n] is a function of both external input x[n] and the network’s state
at the previous time point a[n − 1]. One popular RNN structure arranges neurons in
multiple layers where every layer is recurrently connected and also receives input from
the previous layer. More precisely, the dynamics of a network with L layers is given by:

y(l)[n] =σ(a(l)[n]) for l = 1, . . . , L

a(l)[n] =V(l)y(l)[n− 1] +W(l)y(l−1)[n− 1] for l = 1, . . . , L

y(0)[n] ≡x[n]

where a(l)[n] is the state vector of the neurons at layer l, σ is an activation function, and
V(l) and W(l) are the recurrent and feedforward weight matrices of layer l, respectively.
External inputs x[n] typically arrive at the first layer. Non-scalar quantities are typeset
in bold face.

A LIF neuron in layer l with index i can formally be described in differential form as

τmem
dU

(l)
i

dt
= −(U

(l)
i − Urest) +RI

(l)
i (1)

where U
(l)
i (t) is the membrane potential, Urest is the resting potential, τmem is the membrane

time constant, R is the input resistance, and Ii(t) is the input current [12]. Equation (1) shows

that U (l)
i acts as a leaky integrator of the input current I(l)i . Neurons emit spikes to communicate

4 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 4

their output to other neurons when their membrane voltage reaches the firing threshold ϑ. After

each spike, the membrane voltage U
(l)
i is reset to the resting potential Urest (Fig. 1). Due to this

reset, Equation (1) only describes the subthreshold dynamics of a LIF neuron, i.e. the dynamics

in absence of spiking output of the neuron.

(a)

Input neurons

Output neuron

(b)

0

1

U

0

I

 0 0.4 0.8
Time (ms)

Fig. 1: Example LIF neuron dynamics.
(a) Schematic of network setup. Four input
neurons connect to one postsynaptic neuron.
(b) Input and output activity over time. Bottom
panel: Raster plot showing the activity of the four
input neurons. Middle panel: The synaptic current
I . Top panel: The membrane potential U of the
output neuron as a function of time. Output spikes
are shown as points at the top. During the first
0.4 s the dynamics are strictly “sub-threshold”
and individual postsynaptic potentials (PSPs) are
clearly discernible. Only when multiple PSPs start
to sum up, the neuronal firing threshold (dashed)
is reached and output spikes are generated.

In SNNs, the input current is typically generated by synaptic currents triggered by the arrival

of presynaptic spikes S(l)
j (t). When working with differential equations, it is convenient to denote

a spike train S
(l)
j (t) as a sum of Dirac delta functions S

(l)
j (t) =

∑
s∈C(l)

j
δ(t − s) where s runs

over the firing times C
(l)
j of neuron j in layer l.

Synaptic currents follow specific temporal dynamics themselves. A common first-order ap-

proximation is to model their time course as an exponentially decaying current following each

presynaptic spike. Moreover, we assume that synaptic currents sum linearly. The dynamics of

these operations are given by

dI
(l)
i

dt
= −

I
(l)
i (t)

τsyn︸ ︷︷ ︸
exp. decay

+
∑
j

W
(l)
ij S

(l−1)
j (t)

︸ ︷︷ ︸
feed−forward

+
∑
j

V
(l)
ij S

(l)
j (t)

︸ ︷︷ ︸
recurrent

(2)

where the sum runs over all presynaptic neurons j and W
(l)
ij are the corresponding afferent

weights from the layer below. Further, the V
(l)
ij correspond to explicit recurrent connections

within each layer. Because of this property we can simulate a single LIF neuron with two linear

differential equations whose initial conditions change instantaneously whenever a spike occurs.

Through this property, we can incorporate the reset term in Equation (1) through an extra term

that instantaneously decreases the membrane potential by the amount (ϑ − Urest) whenever the

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 5

neuron emits a spike:

dU
(l)
i

dt
= − 1

τmem

(
(U

(l)
i − Urest) +RI

(l)
i

)
+ S

(l)
i (t)(Urest − ϑ) (3)

It is customary to approximate the solutions of Equations (2) and (3) numerically in discrete

time and to express the output spike train S
(l)
i [n] of neuron i in layer l at time step n as a

nonlinear function of the membrane voltage S
(l)
i [n] ≡ Θ(U

(l)
i [n] − ϑ) where Θ denotes the

Heaviside step function and ϑ corresponds to the firing threshold. Without loss of generality, we

set Urest = 0, R = 1, and ϑ = 1. When using a small simulation time step ∆t > 0, Equation (2)

is well approximated by

I
(l)
i [n+ 1] = αI

(l)
i [n] +

∑
j

W
(l)
ij S

(l−1)
j [n] +

∑
j

V
(l)
ij S

(l)
j [n] (4)

with the decay strength α ≡ exp
(
− ∆t

τsyn

)
. Note that 0 < α < 1 for finite and positive τsyn.

Moreover, S(l)
j [n] ∈ {0, 1}. We use n to denote the time step to emphasize the discrete dynamics.

We can now express Equation (3) as

U
(l)
i [n+ 1] = βU

(l)
i [n] + I

(l)
i [n]− S

(l)
i [n] (5)

with β ≡ exp
(
− ∆t

τmem

)
.

Equations (4) and (5) characterize the dynamics of a RNN. Specifically, the state of neuron i

is given by the instantaneous synaptic currents I
(l)
i and the membrane voltage U

(l)
i (Box. 1). The

computations necessary to update the cell state can be unrolled in time as is best illustrated by

the computational graph (Figure 2).

S(0)[0]

I(1)[0]

U(1)[0]

S(1)[0]

S(0)[1]

I(1)[1]

U(1)[1]

S(1)[1]

S(0)[2]

I(1)[2]

U(1)[2]

S(1)[2]

W(1)

α

β

W(2)

−1

V(1)

W(1)

α

β

W(2)

−1

V(1)

Fig. 2: Illustration of the computational graph of a SNN
in discrete time. Time steps flow from left to right. Input
spikes S(0) are fed into the network from the bottom and
propagate upwards to higher layers. The synaptic currents I(1)

are decayed by α in each time step and fed into the membrane
potentials U(1). The U(1) are similarly decaying over time as
characterized by β. Spike trains S(1) are generated by applying
a threshold nonlinearity to the membrane potentials U(1) in
each time step. Spikes causally affect the network state (red
connections). First, each spike causes the membrane potential
of the neuron that emits the spike to be reset. Second, each
spike may be communicated to the same neuronal population
via recurrent connections V(1). Finally, it may also be com-
municated via W(2) to another downstream network layer or,
alternatively, a readout layer on which a cost function is defined.

5IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 5

neuron emits a spike:

dU
(l)
i

dt
= − 1

τmem

(
(U

(l)
i − Urest) +RI

(l)
i

)
+ S

(l)
i (t)(Urest − ϑ) (3)

It is customary to approximate the solutions of Equations (2) and (3) numerically in discrete

time and to express the output spike train S
(l)
i [n] of neuron i in layer l at time step n as a

nonlinear function of the membrane voltage S
(l)
i [n] ≡ Θ(U

(l)
i [n] − ϑ) where Θ denotes the

Heaviside step function and ϑ corresponds to the firing threshold. Without loss of generality, we

set Urest = 0, R = 1, and ϑ = 1. When using a small simulation time step ∆t > 0, Equation (2)

is well approximated by

I
(l)
i [n+ 1] = αI

(l)
i [n] +

∑
j

W
(l)
ij S

(l−1)
j [n] +

∑
j

V
(l)
ij S

(l)
j [n] (4)

with the decay strength α ≡ exp
(
− ∆t

τsyn

)
. Note that 0 < α < 1 for finite and positive τsyn.

Moreover, S(l)
j [n] ∈ {0, 1}. We use n to denote the time step to emphasize the discrete dynamics.

We can now express Equation (3) as

U
(l)
i [n+ 1] = βU

(l)
i [n] + I

(l)
i [n]− S

(l)
i [n] (5)

with β ≡ exp
(
− ∆t

τmem

)
.

Equations (4) and (5) characterize the dynamics of a RNN. Specifically, the state of neuron i

is given by the instantaneous synaptic currents I
(l)
i and the membrane voltage U

(l)
i (Box. 1). The

computations necessary to update the cell state can be unrolled in time as is best illustrated by

the computational graph (Figure 2).

S(0)[0]

I(1)[0]

U(1)[0]

S(1)[0]

S(0)[1]

I(1)[1]

U(1)[1]

S(1)[1]

S(0)[2]

I(1)[2]

U(1)[2]

S(1)[2]

W(1)

α

β

W(2)

−1

V(1)

W(1)

α

β

W(2)

−1

V(1)

Fig. 2: Illustration of the computational graph of a SNN
in discrete time. Time steps flow from left to right. Input
spikes S(0) are fed into the network from the bottom and
propagate upwards to higher layers. The synaptic currents I(1)

are decayed by α in each time step and fed into the membrane
potentials U(1). The U(1) are similarly decaying over time as
characterized by β. Spike trains S(1) are generated by applying
a threshold nonlinearity to the membrane potentials U(1) in
each time step. Spikes causally affect the network state (red
connections). First, each spike causes the membrane potential
of the neuron that emits the spike to be reset. Second, each
spike may be communicated to the same neuronal population
via recurrent connections V(1). Finally, it may also be com-
municated via W(2) to another downstream network layer or,
alternatively, a readout layer on which a cost function is defined.

6 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 6

We have now seen that SNNs constitute a special case of RNNs. However, so far we have

not explained how their parameters are set to implement a specific computational function. This

is the focus of the rest of this article, in which we present a variety of learning algorithms that

systematically change the parameters towards implementing specific functionalities.

III. METHODS FOR TRAINING RNNS

Powerful machine learning methods are able to train RNNs for a variety of tasks ranging

from time series prediction, to language translation, to automatic speech recognition [1]. In the

following, we discuss the most common methods before analyzing their applicability to SNNs.

There are several stereotypical ingredients that define the training process. The first ingredient

is a cost or loss function which is minimized when the network’s response corresponds to the

desired behavior. In time series prediction, for example, this loss could be the squared difference

between the predicted and the true value. The second ingredient is a mechanism that updates the

network’s weights to minimize the loss. One of the simplest and most powerful mechanisms to

achieve this is to perform gradient descent on the loss function. In network architectures with

hidden units (i.e. units whose activity affect the loss indirectly through other units) the parameter

updates contain terms relating to the activity and weights of the downstream units they project to.

Gradient-descent learning solves this credit assignment problem by providing explicit expressions

for these updates through the chain rule of derivatives. As we will now see, the learning of hidden

unit parameters depends on an efficient method to compute these gradients. When discussing these

methods, we distinguish between solving the spatial credit assignment problem which affects

multi-layer perceptrons (MLPs) and RNNs in the same way and the temporal credit assignment

problem which only occurs in RNNs. We now discuss common algorithms which provide both

types of credit assignment.

A. Spatial credit assignment

To train MLPs, credit or blame needs to be assigned spatially across layers and their respective

units. This spatial credit assignment problem is solved most commonly by the backpropagation

(BP) of error algorithm (Box. 2). In its simplest form, this algorithm propagates errors “back-

wards” from the output of the network to upstream neurons. Using BP to adjust hidden layer

weights ensures that the weight update will reduce the cost function for the current training

example, provided the learning rate is small enough. While this theoretical guarantee is desirable,

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 7

it comes at the cost of certain communication requirements — namely that gradients have to be

communicated back through the network — and increased memory requirements as the neuron

states need to be kept in memory until the errors become available.

Box 2: The Gradient Backpropagation Rule for Neural Networks

The task of learning is to minimize a cost function L over the entire dataset. In a neural network,
this can be achieved by gradient descent, which modifies the network parameters W in the direction
opposite to the gradient:

Wij ← Wij − η∆Wij ,where ∆Wij =
∂L
∂Wij

=
∂L
∂yi

∂yi
∂ai

∂ai
∂Wij

with ai =
∑

j Wijxj the total input to the neuron, yi is the output of neuron i, and η a small learning
rate. The first term is the error of neuron i and the second term reflects the sensitivity of the neuron
output to changes in the parameter. In multilayer networks, gradient descent is expressed as the BP
of the errors starting from the prediction (output) layer to the inputs. Using superscripts l = 0, ..., L
to denote the layer (0 is input, L is output):

∂

∂W
(l)
ij

L = δ
(l)
i y

(l−1)
j , where δ

(l)
i = σ′

(
a
(l)
i

)∑
k

δ
(l+1)
k W

�,(l)
ik , (6)

where σ′ is the derivative of the activation function, and δ
(L)
i = ∂L

∂y
(L)
i

is the error of output neuron

i and y
(0)
i = xi and � indicates the transpose.

x[0]

a(1)[0]

y(1)[0]

x[1]

a(1)[1]

y(1)[1]

x[2]

a(1)[2]

y(1)[2]

W(0)

W(1)

W(0)

W(1)

W(0)

W(1)

V(1) V(1)

“Unrolled” RNN

This update rule is ubiquitous in deep learning and known as
the gradient BP algorithm [1]. Learning is typically carried out
in forward passes (evaluation of the neural network activities)
and backward passes (evaluation of δs).
The same rule can be applied to RNNs. In this case the
recurrence is “unrolled” meaning that an auxiliary network is
created by making copies of the network for each time step.
The unrolled network is simply a deep network with shared
feedforward weights W(l) and recurrent weights V(l), on
which the standard BP applies:

∆W
(l)
ij ∝ ∂

∂W
(l)
ij

L[n] =
n∑

m=0

δ
(l)
i [m]y

(l−1)
j [m], and ∆V

(l)
ij ∝ ∂

∂V
(l)
ij

L[n] =
n∑

m=1

δ
(l)
i [m]y

(l)
j [m− 1]

δ
(l)
i [m] = σ′

(
a
(l)
i [m]

)(∑
k

δ
(l+1)
k [m]W�,l

ik +
∑
k

δ
(l)
k [m+ 1]V �,l

ik

)
,

(7)

Applying BP to an unrolled network is referred to as backpropagation through time (BPTT).

B. Temporal credit assignment

When training RNNs, we also have to consider temporal interdependencies of network activity.

This requires solving the temporal credit assignment problem (Fig. 2). There are two common

methods to achieve this:

7IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 6

We have now seen that SNNs constitute a special case of RNNs. However, so far we have

not explained how their parameters are set to implement a specific computational function. This

is the focus of the rest of this article, in which we present a variety of learning algorithms that

systematically change the parameters towards implementing specific functionalities.

III. METHODS FOR TRAINING RNNS

Powerful machine learning methods are able to train RNNs for a variety of tasks ranging

from time series prediction, to language translation, to automatic speech recognition [1]. In the

following, we discuss the most common methods before analyzing their applicability to SNNs.

There are several stereotypical ingredients that define the training process. The first ingredient

is a cost or loss function which is minimized when the network’s response corresponds to the

desired behavior. In time series prediction, for example, this loss could be the squared difference

between the predicted and the true value. The second ingredient is a mechanism that updates the

network’s weights to minimize the loss. One of the simplest and most powerful mechanisms to

achieve this is to perform gradient descent on the loss function. In network architectures with

hidden units (i.e. units whose activity affect the loss indirectly through other units) the parameter

updates contain terms relating to the activity and weights of the downstream units they project to.

Gradient-descent learning solves this credit assignment problem by providing explicit expressions

for these updates through the chain rule of derivatives. As we will now see, the learning of hidden

unit parameters depends on an efficient method to compute these gradients. When discussing these

methods, we distinguish between solving the spatial credit assignment problem which affects

multi-layer perceptrons (MLPs) and RNNs in the same way and the temporal credit assignment

problem which only occurs in RNNs. We now discuss common algorithms which provide both

types of credit assignment.

A. Spatial credit assignment

To train MLPs, credit or blame needs to be assigned spatially across layers and their respective

units. This spatial credit assignment problem is solved most commonly by the backpropagation

(BP) of error algorithm (Box. 2). In its simplest form, this algorithm propagates errors “back-

wards” from the output of the network to upstream neurons. Using BP to adjust hidden layer

weights ensures that the weight update will reduce the cost function for the current training

example, provided the learning rate is small enough. While this theoretical guarantee is desirable,

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 7

it comes at the cost of certain communication requirements — namely that gradients have to be

communicated back through the network — and increased memory requirements as the neuron

states need to be kept in memory until the errors become available.

Box 2: The Gradient Backpropagation Rule for Neural Networks

The task of learning is to minimize a cost function L over the entire dataset. In a neural network,
this can be achieved by gradient descent, which modifies the network parameters W in the direction
opposite to the gradient:

Wij ← Wij − η∆Wij ,where ∆Wij =
∂L
∂Wij

=
∂L
∂yi

∂yi
∂ai

∂ai
∂Wij

with ai =
∑

j Wijxj the total input to the neuron, yi is the output of neuron i, and η a small learning
rate. The first term is the error of neuron i and the second term reflects the sensitivity of the neuron
output to changes in the parameter. In multilayer networks, gradient descent is expressed as the BP
of the errors starting from the prediction (output) layer to the inputs. Using superscripts l = 0, ..., L
to denote the layer (0 is input, L is output):

∂

∂W
(l)
ij

L = δ
(l)
i y

(l−1)
j , where δ

(l)
i = σ′

(
a
(l)
i

)∑
k

δ
(l+1)
k W

�,(l)
ik , (6)

where σ′ is the derivative of the activation function, and δ
(L)
i = ∂L

∂y
(L)
i

is the error of output neuron

i and y
(0)
i = xi and � indicates the transpose.

x[0]

a(1)[0]

y(1)[0]

x[1]

a(1)[1]

y(1)[1]

x[2]

a(1)[2]

y(1)[2]

W(0)

W(1)

W(0)

W(1)

W(0)

W(1)

V(1) V(1)

“Unrolled” RNN

This update rule is ubiquitous in deep learning and known as
the gradient BP algorithm [1]. Learning is typically carried out
in forward passes (evaluation of the neural network activities)
and backward passes (evaluation of δs).
The same rule can be applied to RNNs. In this case the
recurrence is “unrolled” meaning that an auxiliary network is
created by making copies of the network for each time step.
The unrolled network is simply a deep network with shared
feedforward weights W(l) and recurrent weights V(l), on
which the standard BP applies:

∆W
(l)
ij ∝ ∂

∂W
(l)
ij

L[n] =
n∑

m=0

δ
(l)
i [m]y

(l−1)
j [m], and ∆V

(l)
ij ∝ ∂

∂V
(l)
ij

L[n] =
n∑

m=1

δ
(l)
i [m]y

(l)
j [m− 1]

δ
(l)
i [m] = σ′

(
a
(l)
i [m]

)(∑
k

δ
(l+1)
k [m]W�,l

ik +
∑
k

δ
(l)
k [m+ 1]V �,l

ik

)
,

(7)

Applying BP to an unrolled network is referred to as backpropagation through time (BPTT).

B. Temporal credit assignment

When training RNNs, we also have to consider temporal interdependencies of network activity.

This requires solving the temporal credit assignment problem (Fig. 2). There are two common

methods to achieve this:

8 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 8

1) The “backward” method: This method applies the same strategies as with spatial credit

assignment by “unrolling” the network in time (Box. 2). Backpropagation through time

(BPTT) solves the temporal credit assignment problem by back-propagating errors through

the unrolled network. This method works backward through time after completing a for-

ward pass. The use of standard BP on the unrolled network directly enables the use of

autodifferentiation tools offered in modern machine learning toolkits [3, 13].

2) The forward method: In some situations, it is beneficial to propagate all necessary infor-

mation for gradient computation forward in time [14]. This formulation is achieved by

computing the gradient of a cost function L[n] and maintaining the recursive structure of

the RNN. For example, the “forward gradient” of the feed-forward weight W becomes:

(8)

Gradients with respect to recurrent weights V
(l)
ij can be computed in a similar fashion [14].

The backward optimization method is generally more efficient in terms of computation, but

requires maintaining all the inputs and activations for each time step. Thus, its space complexity

for each layer is O(NT), where N is the number of neurons per layer and T is the number of time

steps. On the other hand, the forward method requires maintaining variables P (l,m)
ijk , resulting in a

O(N3) space complexity per layer. While O(N3) is not a favorable scaling compared to O(NT)

for large N , simplifications of the computational graph can reduce the memory complexity of

the forward method to O(N2) [2, 15], or even O(N)[4]. These simplifications also reduce the

computational complexity, rendering the scaling of forward algorithms comparable or better than

BPTT. Such simplifications are at the core of several successful approaches which we will

describe in Sec. V. Furthermore, the forward method is more appealing from a biological point

of view, since the learning rule can be made consistent with synaptic plasticity in the brain and

“three-factor” rules, as discussed in Section V-B. In summary, efficient algorithms to train RNNs

exist. We will now focus on training SNNs.

∆Wm
ij ∝ ∂L[n]

∂Wm
ij

=
∑
k

∂L[n]
∂y

(L)
k [n]

PL,m
ijk [n], with P

(l,m)
ijk [n] =

∂

∂Wm
ij

y
(l)
k [n]

P
(l,m)
ijk [n] = σ′(a

(l)
k [n])


∑

j′

V
(l)
ij′ P

(l,m)
ijj′ [n− 1] +

∑
j′

W
(l)
ij′ P

(l−1,m)
ijj′ [n− 1] + δlmy

(l−1)
i [n− 1]


 .

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 9

IV. CREDIT ASSIGNMENT WITH SPIKING NEURONS: CHALLENGES AND SOLUTIONS

So far we have discussed common algorithmic solutions to training RNNs. Before these

solutions can be applied to SNNs, however, two key challenges need to be overcome. The first

challenge concerns the non-differentiability of the spiking nonlinearity. Equations (7) and (8)

reveal that the expressions for both the forward and the backward learning methods contain the

derivative of the neural activation function σ′ ≡ ∂y
(l)
i

∂a
(l)
i

as a multiplicative factor. For a spiking

neuron, however, we have S(U(t)) = Θ(U(t)− ϑ), whose derivative is zero everywhere except

at U = ϑ, where it is ill defined (Fig. 3). This all-or-nothing behavior of the binary spiking

nonlinearity stops gradients from “flowing” and makes LIF neurons unsuitable for gradient based

optimization. The same issue occurs in binary neurons and some of the solutions proposed here

are inspired by the methods first developed in binary networks [16, 17].

0

1

0 0.5 1

U

Fig. 3: Commonly used surrogate derivatives. The step function
has zero derivative (violet) everywhere except at 0 where it is ill
defined. Examples of surrogate derivatives which have been used to
train SNNs. Green: Piece-wise linear [3, 18, 19]. Blue: Derivative
of a fast sigmoid [2]. Yellow: Exponential [13]. Note that the axes
have been rescaled on a per-function-basis for illustration purposes.

The second challenge concerns the implementation of the optimization algorithm itself. Stan-

dard BP can be expensive in terms of computation, memory and communication, and may be

poorly suited to the constraints dictated by the hardware that implements it (e.g. a computer,

a brain, or a neuromorphic device). Processing in dedicated neuromorphic hardware and, more

generally, non-von Neumann computers may have specific locality requirements (Box. 3) that

can complicate matters. On such hardware, the forward approach may therefore be preferable. In

practice, however, the scaling of both methods (O(N3) and O(NT)) has proven unsuitable for

many SNN models. For example, the size of the convolutional SNN models trained with BPTT

for gesture classification [20] are GPU memory bounded. Additional simplifying approximations

that reduce the complexity of the forward method will be discussed below. In the following

sections, we describe approximate solutions to these challenges that make learning in SNNs

more tractable.

To overcome the first challenge in training SNNs, which is concerned with the discontinuous

spiking nonlinearity, several approaches have been devised with varying degrees of success. The

most common approaches can be coarsely classified into the following categories: i) resorting

9IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 8

1) The “backward” method: This method applies the same strategies as with spatial credit

assignment by “unrolling” the network in time (Box. 2). Backpropagation through time

(BPTT) solves the temporal credit assignment problem by back-propagating errors through

the unrolled network. This method works backward through time after completing a for-

ward pass. The use of standard BP on the unrolled network directly enables the use of

autodifferentiation tools offered in modern machine learning toolkits [3, 13].

2) The forward method: In some situations, it is beneficial to propagate all necessary infor-

mation for gradient computation forward in time [14]. This formulation is achieved by

computing the gradient of a cost function L[n] and maintaining the recursive structure of

the RNN. For example, the “forward gradient” of the feed-forward weight W becomes:

(8)

Gradients with respect to recurrent weights V
(l)
ij can be computed in a similar fashion [14].

The backward optimization method is generally more efficient in terms of computation, but

requires maintaining all the inputs and activations for each time step. Thus, its space complexity

for each layer is O(NT), where N is the number of neurons per layer and T is the number of time

steps. On the other hand, the forward method requires maintaining variables P (l,m)
ijk , resulting in a

O(N3) space complexity per layer. While O(N3) is not a favorable scaling compared to O(NT)

for large N , simplifications of the computational graph can reduce the memory complexity of

the forward method to O(N2) [2, 15], or even O(N)[4]. These simplifications also reduce the

computational complexity, rendering the scaling of forward algorithms comparable or better than

BPTT. Such simplifications are at the core of several successful approaches which we will

describe in Sec. V. Furthermore, the forward method is more appealing from a biological point

of view, since the learning rule can be made consistent with synaptic plasticity in the brain and

“three-factor” rules, as discussed in Section V-B. In summary, efficient algorithms to train RNNs

exist. We will now focus on training SNNs.

∆Wm
ij ∝ ∂L[n]

∂Wm
ij

=
∑
k

∂L[n]
∂y

(L)
k [n]

PL,m
ijk [n], with P

(l,m)
ijk [n] =

∂

∂Wm
ij

y
(l)
k [n]

P
(l,m)
ijk [n] = σ′(a

(l)
k [n])


∑

j′

V
(l)
ij′ P

(l,m)
ijj′ [n− 1] +

∑
j′

W
(l)
ij′ P

(l−1,m)
ijj′ [n− 1] + δlmy

(l−1)
i [n− 1]


 .

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 9

IV. CREDIT ASSIGNMENT WITH SPIKING NEURONS: CHALLENGES AND SOLUTIONS

So far we have discussed common algorithmic solutions to training RNNs. Before these

solutions can be applied to SNNs, however, two key challenges need to be overcome. The first

challenge concerns the non-differentiability of the spiking nonlinearity. Equations (7) and (8)

reveal that the expressions for both the forward and the backward learning methods contain the

derivative of the neural activation function σ′ ≡ ∂y
(l)
i

∂a
(l)
i

as a multiplicative factor. For a spiking

neuron, however, we have S(U(t)) = Θ(U(t)− ϑ), whose derivative is zero everywhere except

at U = ϑ, where it is ill defined (Fig. 3). This all-or-nothing behavior of the binary spiking

nonlinearity stops gradients from “flowing” and makes LIF neurons unsuitable for gradient based

optimization. The same issue occurs in binary neurons and some of the solutions proposed here

are inspired by the methods first developed in binary networks [16, 17].

0

1

0 0.5 1

U

Fig. 3: Commonly used surrogate derivatives. The step function
has zero derivative (violet) everywhere except at 0 where it is ill
defined. Examples of surrogate derivatives which have been used to
train SNNs. Green: Piece-wise linear [3, 18, 19]. Blue: Derivative
of a fast sigmoid [2]. Yellow: Exponential [13]. Note that the axes
have been rescaled on a per-function-basis for illustration purposes.

The second challenge concerns the implementation of the optimization algorithm itself. Stan-

dard BP can be expensive in terms of computation, memory and communication, and may be

poorly suited to the constraints dictated by the hardware that implements it (e.g. a computer,

a brain, or a neuromorphic device). Processing in dedicated neuromorphic hardware and, more

generally, non-von Neumann computers may have specific locality requirements (Box. 3) that

can complicate matters. On such hardware, the forward approach may therefore be preferable. In

practice, however, the scaling of both methods (O(N3) and O(NT)) has proven unsuitable for

many SNN models. For example, the size of the convolutional SNN models trained with BPTT

for gesture classification [20] are GPU memory bounded. Additional simplifying approximations

that reduce the complexity of the forward method will be discussed below. In the following

sections, we describe approximate solutions to these challenges that make learning in SNNs

more tractable.

To overcome the first challenge in training SNNs, which is concerned with the discontinuous

spiking nonlinearity, several approaches have been devised with varying degrees of success. The

most common approaches can be coarsely classified into the following categories: i) resorting

10 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 10

to entirely biologically inspired local learning rules for the hidden units, ii) translating conven-

tionally trained “rate-based” neural networks to SNNs, iii) smoothing the network model to be

continuously differentiable, or iv) defining a surrogate gradient (SG) as a continuous relaxation

of the real gradients. Approaches pertaining biologically motivated local learning rules (i) and

network translation (ii) have been reviewed extensively elsewhere [5, 21]. In this article, we

therefore focus on the latter two supervised approaches (iii & iv) which we will refer to as the

“smoothed” and the SG approach. First, we review existing literature on common “smoothing”

approaches before turning to an in-depth discussion of how to build functional SNNs using SG

methods.

A. Smoothed spiking neural networks

The defining characteristic of smoothed SNNs is that their formulation ensures well-behaved

gradients which are directly suitable for optimization. Smooth models can be further categorized

into (1) soft nonlinearity models, (2) probabilistic models, for which gradients are only well

defined in expectation, or models which either rely entirely on (3) rate or (4) single-spike temporal

codes.

1) Gradients in soft nonlinearity models: This approach can in principle be applied directly

to all spiking neuron models which explicitly include a smooth spike generating process. This

includes, for instance, the Hodgkin-Huxley, Morris-Lecar, and FitzHugh-Nagumo models [12].

In practice this approach has only been applied successfully by Huh and Sejnowski [22] using

an augmented integrate-and-fire model in which the binary spiking nonlinearity was replaced by

a continuous-valued gating function. The resulting network constitutes a RCNN which can be

optimized using standard methods of BPTT or real-time recurrent learning (RTRL). Importantly,

the soft threshold models compromise on one of the key features of SNN, namely the binary

spike propagation.

2) Gradients in probabilistic models: Another example for smooth models are binary prob-

abilistic models. In simple terms, stochasticity effectively smooths out the discontinuous binary

nonlinearity which makes it possible to define a gradient on expectation values. Binary proba-

bilistic models have been objects of extensive study in the machine learning literature mainly in

the context of (restricted) Boltzmann machines [23]. Similarly, the propagation of gradients has

been studied for binary stochastic models [17]. Probabilistic models are practically useful because

the log-likelihood of a spike train is a smooth quantity which can be optimized using gradient

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 11

descent [24]. Although this insight was first discovered in networks without hidden units, the

same ideas were later extended to multi-layer networks [25]. Similarly, Guerguiev et al. [26] used

probabilistic neurons to study biologically plausible ways of propagating error or target signals

using segregated dendrites (see Section V-A). In a similar vein, variational learning approaches

were shown to be capable of learning useful hidden layer representations in SNNs [27–29].

However, the injected noise necessary to smooth out the effect of binary nonlinearities often

poses a challenge for optimization [28]. How noise, which is found ubiquitously in neurobiology,

influences learning in the brain, remains an open question.

3) Gradients in rate-coding networks: Another common approach to obtain gradients in SNNs

is to assume a rate-based coding scheme. The main idea is that spike rate is the underlying

information-carrying quantity. For many plausible neuron models, the supra-threshold firing rate

depends smoothly on the neuron input. This input-output dependence is captured by the so-called

f-I curve of a neuron. In such cases, the derivative of the f-I curves is suitable for gradient-based

optimization.

There are several examples of this approach. For instance, Hunsberger and Eliasmith [30] as

well as Neftci et al. [31] used an effectively rate-coded input scheme to demonstrate competitive

performance on standard machine learning benchmarks such as CIFAR10 and MNIST. Similarly

Lee et al. [32] demonstrated deep learning in SNNs by defining partial derivatives on low-pass

filtered spike trains.

Rate-based approaches can offer good performance, but they may be inefficient. On the one

hand, precise estimation of firing rates requires averaging over a number of spikes. Such averaging

requires either relatively high firing rates or long averaging times because several repeats are

needed to average out discretization noise. This problem can be partially addressed by spatial

averaging over large populations of spiking neurons. However, this may require the use of larger

neuron numbers.

Finally, the distinction between rate-coding and probabilistic networks can be blurry since many

probabilistic network implementations use rate-coding at the output level. Both types of models

are differentiable, but for different reasons: Probabilistic models are based on a firing probability

densities [24]. Importantly, the firing probability of a neuron is a continuous function. Although

measuring probability changes requires “trial averaging” over several samples, it is the underlying

continuity of the probability density which formally allows to define differential improvements

and thus to derive gradients. By exploiting this feature, probabilistic models have been used

11IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 10

to entirely biologically inspired local learning rules for the hidden units, ii) translating conven-

tionally trained “rate-based” neural networks to SNNs, iii) smoothing the network model to be

continuously differentiable, or iv) defining a surrogate gradient (SG) as a continuous relaxation

of the real gradients. Approaches pertaining biologically motivated local learning rules (i) and

network translation (ii) have been reviewed extensively elsewhere [5, 21]. In this article, we

therefore focus on the latter two supervised approaches (iii & iv) which we will refer to as the

“smoothed” and the SG approach. First, we review existing literature on common “smoothing”

approaches before turning to an in-depth discussion of how to build functional SNNs using SG

methods.

A. Smoothed spiking neural networks

The defining characteristic of smoothed SNNs is that their formulation ensures well-behaved

gradients which are directly suitable for optimization. Smooth models can be further categorized

into (1) soft nonlinearity models, (2) probabilistic models, for which gradients are only well

defined in expectation, or models which either rely entirely on (3) rate or (4) single-spike temporal

codes.

1) Gradients in soft nonlinearity models: This approach can in principle be applied directly

to all spiking neuron models which explicitly include a smooth spike generating process. This

includes, for instance, the Hodgkin-Huxley, Morris-Lecar, and FitzHugh-Nagumo models [12].

In practice this approach has only been applied successfully by Huh and Sejnowski [22] using

an augmented integrate-and-fire model in which the binary spiking nonlinearity was replaced by

a continuous-valued gating function. The resulting network constitutes a RCNN which can be

optimized using standard methods of BPTT or real-time recurrent learning (RTRL). Importantly,

the soft threshold models compromise on one of the key features of SNN, namely the binary

spike propagation.

2) Gradients in probabilistic models: Another example for smooth models are binary prob-

abilistic models. In simple terms, stochasticity effectively smooths out the discontinuous binary

nonlinearity which makes it possible to define a gradient on expectation values. Binary proba-

bilistic models have been objects of extensive study in the machine learning literature mainly in

the context of (restricted) Boltzmann machines [23]. Similarly, the propagation of gradients has

been studied for binary stochastic models [17]. Probabilistic models are practically useful because

the log-likelihood of a spike train is a smooth quantity which can be optimized using gradient

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 11

descent [24]. Although this insight was first discovered in networks without hidden units, the

same ideas were later extended to multi-layer networks [25]. Similarly, Guerguiev et al. [26] used

probabilistic neurons to study biologically plausible ways of propagating error or target signals

using segregated dendrites (see Section V-A). In a similar vein, variational learning approaches

were shown to be capable of learning useful hidden layer representations in SNNs [27–29].

However, the injected noise necessary to smooth out the effect of binary nonlinearities often

poses a challenge for optimization [28]. How noise, which is found ubiquitously in neurobiology,

influences learning in the brain, remains an open question.

3) Gradients in rate-coding networks: Another common approach to obtain gradients in SNNs

is to assume a rate-based coding scheme. The main idea is that spike rate is the underlying

information-carrying quantity. For many plausible neuron models, the supra-threshold firing rate

depends smoothly on the neuron input. This input-output dependence is captured by the so-called

f-I curve of a neuron. In such cases, the derivative of the f-I curves is suitable for gradient-based

optimization.

There are several examples of this approach. For instance, Hunsberger and Eliasmith [30] as

well as Neftci et al. [31] used an effectively rate-coded input scheme to demonstrate competitive

performance on standard machine learning benchmarks such as CIFAR10 and MNIST. Similarly

Lee et al. [32] demonstrated deep learning in SNNs by defining partial derivatives on low-pass

filtered spike trains.

Rate-based approaches can offer good performance, but they may be inefficient. On the one

hand, precise estimation of firing rates requires averaging over a number of spikes. Such averaging

requires either relatively high firing rates or long averaging times because several repeats are

needed to average out discretization noise. This problem can be partially addressed by spatial

averaging over large populations of spiking neurons. However, this may require the use of larger

neuron numbers.

Finally, the distinction between rate-coding and probabilistic networks can be blurry since many

probabilistic network implementations use rate-coding at the output level. Both types of models

are differentiable, but for different reasons: Probabilistic models are based on a firing probability

densities [24]. Importantly, the firing probability of a neuron is a continuous function. Although

measuring probability changes requires “trial averaging” over several samples, it is the underlying

continuity of the probability density which formally allows to define differential improvements

and thus to derive gradients. By exploiting this feature, probabilistic models have been used

12 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 12

to learn precise output spike timing [24, 25]. In contrast, deterministic networks always emit a

fixed integer number of spikes for a given input. To nevertheless get at a notion of differential

improvement, one may consider the number of spikes over a given time interval within single

trials. When averaging over sufficiently large intervals, the resulting firing rates behave as a quasi

continuous function of the input current. This smooth input output relationship is captured by the

neuronal f-I curve which can be used for optimization [30, 31]. Operating at the level of rates,

however, comes at the expense temporal precision.

4) Gradients in single-spike-timing-coding networks: In an effort to optimize SNNs without

potentially harmful noise injection and without reverting to a rate-based coding scheme, several

studies have considered the outputs of neurons in SNNs to be a set of firing times. In such a

temporal coding setting, individual spikes could carry significantly more information than rate-

based schemes that only consider the total number of spikes in an interval.

The idea behind training temporal coding networks was pioneered in SpikeProp [33]. In this

work the analytic expressions of firing times for hidden units were linearized, allowing to ana-

lytically compute approximate hidden layer gradients. More recently, a similar approach without

the need for linearization was used in [34] where the author computed the spike timing gradients

explicitly for non-leaky integrate-and-fire neurons. Intriguingly, the work showed competitive

performance on conventional networks and benchmarks.

Although the spike timing formulation does in some cases yield well-defined gradients, it may

suffer from certain limitations. For instance, the formulation of SpikeProp [33] required each

hidden unit to emit exactly one spike per trial, because it is impossible to define firing time for

quiescent units. Ultimately, such a non-quiescence requirement could be at conflict with power-

efficiency for which it is conceivably beneficial to, for instance, only have a subset of neurons

active for any given task.

B. Surrogate gradients

SG methods provide an alternative approach to overcoming the difficulties associated with

the discontinuous nonlinearity. Moreover, they hold opportunities to reduce the potentially high

algorithmic complexity associated with training SNNs. Their defining characteristic is that instead

of changing the model definition as in the smoothed approaches, a SG is introduced. In the fol-

lowing we make two distinctions. We first consider SGs which constitute a continuous relaxation

of the non-smooth spiking nonlinearity for purposes of numerical optimization (Fig. 4). Such

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 13

SGs do not explicitly change the optimization algorithm itself and can be used, for instance,

in combination with BPTT. Further, we also consider SGs with more profound changes that

explicitly affect locality of the underlying optimization algorithms themselves to improve the

computational and/or memory access overhead of the learning process. One example of this

approach that we will discuss involves replacing the global loss by a number of local loss

functions.

Finally, the use of SGs allows to efficiently train SNNs end-to-end without the need to specify

which coding scheme is to be used in the hidden layers.

(a)

(b)

Fig. 4: Example of SG for a SNN classifier. (a) Value of the loss function (gray) of an SNN classifier
along an interpolation path over the hidden layer parameters W(1). Specifically, we linearly interpolated
between the random initial and final (post-optimization) weight matrices of the hidden layer inputs W(1)

(network details: 2 input, 2 hidden, and 2 output units trained on a binary classification task). Note that the
loss function (gray) displays characteristic plateaus with zero gradient which are detrimental for numerical
optimization. (b) Norm of hidden layer (surrogate) gradients in arbitrary units along the interpolation path.
To perform numerical optimization in this network we constructed a SG (violet) which, in contrast to
the true gradient (gray), is non-zero. Note that we obtained the “true gradient” via the finite differences
method which in itself is an approximation. Importantly, the SG approximates the true gradient, but retains
favorable properties for optimization, i.e. continuity and finiteness. The SG can be thought of as the gradient
of a virtual surrogate loss function (violet curve in (a); obtained by numerical integration of the SG and
scaled to match loss at initial and final point). This surrogate loss remains virtual because it is generally
not computed explicitly. In practice, suitable SGs are obtained directly from the gradients of the original
network through sensible approximations. This is a key difference with respect to some other approaches
[22] in which the entire network is replaced explicitly by a surrogate network on which gradient descent
can be performed using its true gradients.

Like standard gradient-descent, SG learning can deal with the spatial and temporal credit

assignment problem by either BPTT or by forward methods, e.g. through the use of eligibility

traces (see Section III-B for details). Alternatively, additional approximations can be introduced

13IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 12

to learn precise output spike timing [24, 25]. In contrast, deterministic networks always emit a

fixed integer number of spikes for a given input. To nevertheless get at a notion of differential

improvement, one may consider the number of spikes over a given time interval within single

trials. When averaging over sufficiently large intervals, the resulting firing rates behave as a quasi

continuous function of the input current. This smooth input output relationship is captured by the

neuronal f-I curve which can be used for optimization [30, 31]. Operating at the level of rates,

however, comes at the expense temporal precision.

4) Gradients in single-spike-timing-coding networks: In an effort to optimize SNNs without

potentially harmful noise injection and without reverting to a rate-based coding scheme, several

studies have considered the outputs of neurons in SNNs to be a set of firing times. In such a

temporal coding setting, individual spikes could carry significantly more information than rate-

based schemes that only consider the total number of spikes in an interval.

The idea behind training temporal coding networks was pioneered in SpikeProp [33]. In this

work the analytic expressions of firing times for hidden units were linearized, allowing to ana-

lytically compute approximate hidden layer gradients. More recently, a similar approach without

the need for linearization was used in [34] where the author computed the spike timing gradients

explicitly for non-leaky integrate-and-fire neurons. Intriguingly, the work showed competitive

performance on conventional networks and benchmarks.

Although the spike timing formulation does in some cases yield well-defined gradients, it may

suffer from certain limitations. For instance, the formulation of SpikeProp [33] required each

hidden unit to emit exactly one spike per trial, because it is impossible to define firing time for

quiescent units. Ultimately, such a non-quiescence requirement could be at conflict with power-

efficiency for which it is conceivably beneficial to, for instance, only have a subset of neurons

active for any given task.

B. Surrogate gradients

SG methods provide an alternative approach to overcoming the difficulties associated with

the discontinuous nonlinearity. Moreover, they hold opportunities to reduce the potentially high

algorithmic complexity associated with training SNNs. Their defining characteristic is that instead

of changing the model definition as in the smoothed approaches, a SG is introduced. In the fol-

lowing we make two distinctions. We first consider SGs which constitute a continuous relaxation

of the non-smooth spiking nonlinearity for purposes of numerical optimization (Fig. 4). Such

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 13

SGs do not explicitly change the optimization algorithm itself and can be used, for instance,

in combination with BPTT. Further, we also consider SGs with more profound changes that

explicitly affect locality of the underlying optimization algorithms themselves to improve the

computational and/or memory access overhead of the learning process. One example of this

approach that we will discuss involves replacing the global loss by a number of local loss

functions.

Finally, the use of SGs allows to efficiently train SNNs end-to-end without the need to specify

which coding scheme is to be used in the hidden layers.

(a)

(b)

Fig. 4: Example of SG for a SNN classifier. (a) Value of the loss function (gray) of an SNN classifier
along an interpolation path over the hidden layer parameters W(1). Specifically, we linearly interpolated
between the random initial and final (post-optimization) weight matrices of the hidden layer inputs W(1)

(network details: 2 input, 2 hidden, and 2 output units trained on a binary classification task). Note that the
loss function (gray) displays characteristic plateaus with zero gradient which are detrimental for numerical
optimization. (b) Norm of hidden layer (surrogate) gradients in arbitrary units along the interpolation path.
To perform numerical optimization in this network we constructed a SG (violet) which, in contrast to
the true gradient (gray), is non-zero. Note that we obtained the “true gradient” via the finite differences
method which in itself is an approximation. Importantly, the SG approximates the true gradient, but retains
favorable properties for optimization, i.e. continuity and finiteness. The SG can be thought of as the gradient
of a virtual surrogate loss function (violet curve in (a); obtained by numerical integration of the SG and
scaled to match loss at initial and final point). This surrogate loss remains virtual because it is generally
not computed explicitly. In practice, suitable SGs are obtained directly from the gradients of the original
network through sensible approximations. This is a key difference with respect to some other approaches
[22] in which the entire network is replaced explicitly by a surrogate network on which gradient descent
can be performed using its true gradients.

Like standard gradient-descent, SG learning can deal with the spatial and temporal credit

assignment problem by either BPTT or by forward methods, e.g. through the use of eligibility

traces (see Section III-B for details). Alternatively, additional approximations can be introduced

14 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 14

which may offer advantages specifically for hardware implementations. In the following, we

briefly review existing work relying on SG methods before turning to a more in-depth treatment

of the underlying principles and capabilities.

1) Surrogate derivatives for spiking nonlinearity: A set of works have used SG to specifically

overcome the challenge of the discontinuous spiking nonlinearity. In these works, typically a

standard algorithm such as BPTT is used with one minor modification: within the algorithm each

occurrence of the derivative of the spiking nonlinearity is replaced by the derivative of a smooth

function. Implementing these approaches is straight-forward in most auto-differentiation-enabled

machine learning toolkits.

One of the first uses of such a SG is described in Bohte [19] where the derivative of a spiking

neuron non-linearity was approximated by the derivative of a truncated quadratic function, thus

resulting in a rectifying linear unit (ReLU) as surrogate derivative (Fig. 3). This is similar in flavor

to the solution proposed to optimize binary neural networks [16]. The same idea underlies the

training of large-scale convolutional networks with binary activations on classification problems

using neuromorphic hardware [18]. Zenke and Ganguli [2] proposed a three factor online learning

rule using a fast sigmoid to construct a SG. Shrestha and Orchard [13] used an exponential

function and reported competitive performance on a range of neuromorphic benchmark prob-

lems. Additionally, O’Connor et al. [35] described a spike-based encoding method inspired by

Sigma-Delta modulators. They used their method to approximately encode both the activations

and the errors in standard feedforward artificial neural networks (ANNs), and apply standard

backpropagation on these sparse approximate encodings.

Surrogate derivatives have also been used to train spiking RCNNs where dynamical recurrence

arises due to the use of LIF neurons as well as due to recurrent synaptic connections. Recently,

Bellec et al. [3] successfully trained RCNNs with slow temporal neuronal dynamics using a

piecewise linear surrogate derivative. Encouragingly, the authors found that such networks can

perform on par with conventional long short-term memory (LSTM) networks. Similarly, Woźniak

et al. [36] reported competitive performance on a series of temporal benchmark datasets.

In summary, a plethora of studies have constructed SG using different nonlinearities and trained

a diversity of SNN architectures. These nonlinearties, however, have a common underlying theme.

All functions are nonlinear and monotonically increasing towards the firing threshold (Fig. 3).

While a more systematic comparison of different surrogate nonlinearities is still pending, overall

the diversity found in the present literature suggests that the success of the method is not crucially

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 15

dependent on the details of the surrogate used to approximate the derivative.

2) Surrogate gradients affecting locality of the update rules: The majority of studies discussed

in the previous section introduced a surrogate nonlinearity to prevent gradients from vanishing

(or exploding), but by relying on methods such as BPTT, they did not explicitly affect the

structural properties of the learning rules. There are, however, training approaches for SNNs

which introduce more far-reaching modifications which may completely alter the way error

signals or target signals are propagated (or generated) within the network. Such approaches are

typically used in conjunction with the aforementioned surrogate derivatives. There are two main

motivations for such modifications which are typically linked to physical constraints that make it

impossible to implement the “correct” gradient descent algorithm. For instance, in neurobiology

biophysical constraints make it impossible to implement BPTT without further approximations.

Studies interested in how the brain could solve the credit assignment problem focus on how

simplified “local” algorithms could achieve similar performance while adhering to the constraints

of the underlying biological wetware (Box. 3). Similarly, neuromorphic hardware may pose certain

constraints with regard to memory or communications which impede the use of BPTT and call

for simpler and often more local methods for training on such devices.

As training SNNs using SGs advances to deeper architectures, it is foreseeable that additional

problems, similar to the ones encountered in ANNs, will arise. For instance, several approaches

currently rely on SGs derived from sigmoidal activation functions (Fig. 3). However, the use of

sigmoidal activation functions is implicated with vanishing gradient problems. Another set of

challenges which may well need tackling in the future could be linked to the bias which SGs

introduce into the learning dynamics.

In the following Applications Section, we will review a selection of promising SG approaches

which introduce far larger deviations from the “true gradients” and still allow for learning at a

greatly reduced complexity and computational cost.

V. APPLICATIONS

In this section, we present a selection of illustrative applications of smooth or SGs to SNNs

which exploit both the internal continuous-time dynamics of the neurons and their event-driven

nature. The latter allows a network to remain quiescent until incoming spikes trigger activity.

15IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 14

which may offer advantages specifically for hardware implementations. In the following, we

briefly review existing work relying on SG methods before turning to a more in-depth treatment

of the underlying principles and capabilities.

1) Surrogate derivatives for spiking nonlinearity: A set of works have used SG to specifically

overcome the challenge of the discontinuous spiking nonlinearity. In these works, typically a

standard algorithm such as BPTT is used with one minor modification: within the algorithm each

occurrence of the derivative of the spiking nonlinearity is replaced by the derivative of a smooth

function. Implementing these approaches is straight-forward in most auto-differentiation-enabled

machine learning toolkits.

One of the first uses of such a SG is described in Bohte [19] where the derivative of a spiking

neuron non-linearity was approximated by the derivative of a truncated quadratic function, thus

resulting in a rectifying linear unit (ReLU) as surrogate derivative (Fig. 3). This is similar in flavor

to the solution proposed to optimize binary neural networks [16]. The same idea underlies the

training of large-scale convolutional networks with binary activations on classification problems

using neuromorphic hardware [18]. Zenke and Ganguli [2] proposed a three factor online learning

rule using a fast sigmoid to construct a SG. Shrestha and Orchard [13] used an exponential

function and reported competitive performance on a range of neuromorphic benchmark prob-

lems. Additionally, O’Connor et al. [35] described a spike-based encoding method inspired by

Sigma-Delta modulators. They used their method to approximately encode both the activations

and the errors in standard feedforward artificial neural networks (ANNs), and apply standard

backpropagation on these sparse approximate encodings.

Surrogate derivatives have also been used to train spiking RCNNs where dynamical recurrence

arises due to the use of LIF neurons as well as due to recurrent synaptic connections. Recently,

Bellec et al. [3] successfully trained RCNNs with slow temporal neuronal dynamics using a

piecewise linear surrogate derivative. Encouragingly, the authors found that such networks can

perform on par with conventional long short-term memory (LSTM) networks. Similarly, Woźniak

et al. [36] reported competitive performance on a series of temporal benchmark datasets.

In summary, a plethora of studies have constructed SG using different nonlinearities and trained

a diversity of SNN architectures. These nonlinearties, however, have a common underlying theme.

All functions are nonlinear and monotonically increasing towards the firing threshold (Fig. 3).

While a more systematic comparison of different surrogate nonlinearities is still pending, overall

the diversity found in the present literature suggests that the success of the method is not crucially

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 15

dependent on the details of the surrogate used to approximate the derivative.

2) Surrogate gradients affecting locality of the update rules: The majority of studies discussed

in the previous section introduced a surrogate nonlinearity to prevent gradients from vanishing

(or exploding), but by relying on methods such as BPTT, they did not explicitly affect the

structural properties of the learning rules. There are, however, training approaches for SNNs

which introduce more far-reaching modifications which may completely alter the way error

signals or target signals are propagated (or generated) within the network. Such approaches are

typically used in conjunction with the aforementioned surrogate derivatives. There are two main

motivations for such modifications which are typically linked to physical constraints that make it

impossible to implement the “correct” gradient descent algorithm. For instance, in neurobiology

biophysical constraints make it impossible to implement BPTT without further approximations.

Studies interested in how the brain could solve the credit assignment problem focus on how

simplified “local” algorithms could achieve similar performance while adhering to the constraints

of the underlying biological wetware (Box. 3). Similarly, neuromorphic hardware may pose certain

constraints with regard to memory or communications which impede the use of BPTT and call

for simpler and often more local methods for training on such devices.

As training SNNs using SGs advances to deeper architectures, it is foreseeable that additional

problems, similar to the ones encountered in ANNs, will arise. For instance, several approaches

currently rely on SGs derived from sigmoidal activation functions (Fig. 3). However, the use of

sigmoidal activation functions is implicated with vanishing gradient problems. Another set of

challenges which may well need tackling in the future could be linked to the bias which SGs

introduce into the learning dynamics.

In the following Applications Section, we will review a selection of promising SG approaches

which introduce far larger deviations from the “true gradients” and still allow for learning at a

greatly reduced complexity and computational cost.

V. APPLICATIONS

In this section, we present a selection of illustrative applications of smooth or SGs to SNNs

which exploit both the internal continuous-time dynamics of the neurons and their event-driven

nature. The latter allows a network to remain quiescent until incoming spikes trigger activity.

16 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 16

x(0)

y(1)

y(2)

L

(a) BP

x(0)

y(1)

y(2)

L

(b) FA

x(0)

y(1)

y(2)

L

(c) DFA

x(0)

y(1)

y(2)

L(1)

L(2)

(d) Local Errors

Fig. 5: Strategies for relaxing gradient
BP requirements. Dashed lines indicate
fixed, random connections. (a) BP propa-
gates errors through each layer using the
transpose of the forward weights by al-
ternating forward and backward passes.
(b) Feedback Alignment [37] replaces the
transposed matrix with a random one. (c)
Direct Feedback Alignment [38] directly
propagates the errors from the top layer to
the hidden layers. (d) Local errors [29] uses
a fixed, random, auxiliary cost function at
each layer.

A. Feedback alignment and random error backpropagation

One family of algorithms that relaxes some of the requirements of BP are feedback alignment

or, more generally, random BP algorithms [37–39]. These are approximations to the gradient BP

rule that side-step the non-locality problem by replacing weights in the BP rule with random ones

(Fig. 5b): δ
(l)
i = σ′

(
a
(l)
i

)∑
k δ

(l+1)
k G

(l)
ki , where G(l) is a fixed, random matrix with the same

dimensions as W. The replacement of W�,(l) with a random matrix G(l) breaks the dependency

of the backward phase on W(l), enabling the rule to be more local. One common variation

is to replace the entire backward propagation by a random propagation of the errors to each

layer (Fig. 5c) [38]: δ
(l)
i = σ′

(
a
(l)
i

)∑
k δ

(L)
k H

(l)
ki , where H(l) is a fixed, random matrix with

appropriate dimensions.

Random BP approaches lead to remarkably little loss in classification performance on some

benchmark tasks. Although a general theoretical understanding of random BP is still a subject of

intense research, simulation studies have shown that, during learning, the network adjusts its feed-

forward weights such that they partially align with the (random) feedback weights, thus permitting

them to convey useful error information [37]. Building on these findings, an asynchronous spike-

driven adaptation of random BP using local synaptic plasticity rules with the dynamics of spiking

neurons was demonstrated in [31]. To obtain the SGs, the authors approximated the derivative

of the neural activation function using a symmetric function that is zero everywhere except in

the vicinity of zero, where it is constant. The derivative of this function exists and is piecewise

constant. Networks using this learning rule performed remarkably well, and were shown to operate

continuously and asynchronously without the alternation between forward and backward passes

that is necessary in BP. One important limitation with random BP applied to SNNs was that the

temporal dynamics of the neurons and synapses was not taken into account in the gradients. The

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 17

following rule, SuperSpike solves this problem.

Box 3: Local models of computation

Locality of computations is characterized by the set variables available
to the physical processing elements, and depends on the computational
substrate. To illustrate the concept of locality, we assume two neurons, A
and B, and would like Neuron A to implement a function on domain D
defined as:

D = Dloc ∪Dnloc,where Dloc = {WBA, SA(t), UA(t)}
and Dnloc = {SB(t− T), UB}.

Here, SB(t−T) refers to the output of neuron B T seconds ago, UA, UB are the respective membrane
potentials, and WBA is the synaptic weight from B to A. Variables under Dloc are directly available
to Neuron A and are thus local to it.
On the other hand, variable SB(t − T) is temporally non-local and UB is spatially non-local to
neuron A. Non-local information can be transmitted through special structures, for example dedicated
encoders and decoders for UB and a form of working memory (WM) for SB(t−T). Although locality
in a model of computation can make its use challenging, it enables massively parallel computations
with dynamical interprocess communications.

B. Supervised learning with local three factor learning rules

SuperSpike is a biologically plausible three factor learning rule. In contrast to many existing

three factor rules which fall into the category of “smoothed approaches” [24–29], SuperSpike is a

SG approach which combines several approximations to render it more biologically plausible [2].

Although the underlying motivation of the study is geared toward a deeper understanding of

learning in biological neural networks, the learning rule may prove interesting for hardware

implementations since it is an online rule that does not require back-propagating error information

through time. Specifically, the rule uses synaptic eligibility traces to solve the temporal credit

assignment problem.

We now provide a short account on why SuperSpike can be seen as one of the forward-in-

time optimization procedures. SuperSpike was derived for temporal supervised learning tasks in

which a given output neuron learns to spike at predefined times. To that end, it minimizes the van

Rossum distance with kernel λ between a set of output spike trains Si(t) and their corresponding

target spike trains S∗
i (t)

L =
1

2

∫ t

−∞

∑
i

(λ ∗ (Si[s]− S∗
i [s]))

2 ds ≈ 1

2

∑
n,k

(λ ∗ (Si[n]− S∗
i [n]))

2

︸ ︷︷ ︸
≡e2i [n]

(9)

17IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 16

x(0)

y(1)

y(2)

L

(a) BP

x(0)

y(1)

y(2)

L

(b) FA

x(0)

y(1)

y(2)

L

(c) DFA

x(0)

y(1)

y(2)

L(1)

L(2)

(d) Local Errors

Fig. 5: Strategies for relaxing gradient
BP requirements. Dashed lines indicate
fixed, random connections. (a) BP propa-
gates errors through each layer using the
transpose of the forward weights by al-
ternating forward and backward passes.
(b) Feedback Alignment [37] replaces the
transposed matrix with a random one. (c)
Direct Feedback Alignment [38] directly
propagates the errors from the top layer to
the hidden layers. (d) Local errors [29] uses
a fixed, random, auxiliary cost function at
each layer.

A. Feedback alignment and random error backpropagation

One family of algorithms that relaxes some of the requirements of BP are feedback alignment

or, more generally, random BP algorithms [37–39]. These are approximations to the gradient BP

rule that side-step the non-locality problem by replacing weights in the BP rule with random ones

(Fig. 5b): δ
(l)
i = σ′

(
a
(l)
i

)∑
k δ

(l+1)
k G

(l)
ki , where G(l) is a fixed, random matrix with the same

dimensions as W. The replacement of W�,(l) with a random matrix G(l) breaks the dependency

of the backward phase on W(l), enabling the rule to be more local. One common variation

is to replace the entire backward propagation by a random propagation of the errors to each

layer (Fig. 5c) [38]: δ
(l)
i = σ′

(
a
(l)
i

)∑
k δ

(L)
k H

(l)
ki , where H(l) is a fixed, random matrix with

appropriate dimensions.

Random BP approaches lead to remarkably little loss in classification performance on some

benchmark tasks. Although a general theoretical understanding of random BP is still a subject of

intense research, simulation studies have shown that, during learning, the network adjusts its feed-

forward weights such that they partially align with the (random) feedback weights, thus permitting

them to convey useful error information [37]. Building on these findings, an asynchronous spike-

driven adaptation of random BP using local synaptic plasticity rules with the dynamics of spiking

neurons was demonstrated in [31]. To obtain the SGs, the authors approximated the derivative

of the neural activation function using a symmetric function that is zero everywhere except in

the vicinity of zero, where it is constant. The derivative of this function exists and is piecewise

constant. Networks using this learning rule performed remarkably well, and were shown to operate

continuously and asynchronously without the alternation between forward and backward passes

that is necessary in BP. One important limitation with random BP applied to SNNs was that the

temporal dynamics of the neurons and synapses was not taken into account in the gradients. The

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 17

following rule, SuperSpike solves this problem.

Box 3: Local models of computation

Locality of computations is characterized by the set variables available
to the physical processing elements, and depends on the computational
substrate. To illustrate the concept of locality, we assume two neurons, A
and B, and would like Neuron A to implement a function on domain D
defined as:

D = Dloc ∪Dnloc,where Dloc = {WBA, SA(t), UA(t)}
and Dnloc = {SB(t− T), UB}.

Here, SB(t−T) refers to the output of neuron B T seconds ago, UA, UB are the respective membrane
potentials, and WBA is the synaptic weight from B to A. Variables under Dloc are directly available
to Neuron A and are thus local to it.
On the other hand, variable SB(t − T) is temporally non-local and UB is spatially non-local to
neuron A. Non-local information can be transmitted through special structures, for example dedicated
encoders and decoders for UB and a form of working memory (WM) for SB(t−T). Although locality
in a model of computation can make its use challenging, it enables massively parallel computations
with dynamical interprocess communications.

B. Supervised learning with local three factor learning rules

SuperSpike is a biologically plausible three factor learning rule. In contrast to many existing

three factor rules which fall into the category of “smoothed approaches” [24–29], SuperSpike is a

SG approach which combines several approximations to render it more biologically plausible [2].

Although the underlying motivation of the study is geared toward a deeper understanding of

learning in biological neural networks, the learning rule may prove interesting for hardware

implementations since it is an online rule that does not require back-propagating error information

through time. Specifically, the rule uses synaptic eligibility traces to solve the temporal credit

assignment problem.

We now provide a short account on why SuperSpike can be seen as one of the forward-in-

time optimization procedures. SuperSpike was derived for temporal supervised learning tasks in

which a given output neuron learns to spike at predefined times. To that end, it minimizes the van

Rossum distance with kernel λ between a set of output spike trains Si(t) and their corresponding

target spike trains S∗
i (t)

L =
1

2

∫ t

−∞

∑
i

(λ ∗ (Si[s]− S∗
i [s]))

2 ds ≈ 1

2

∑
n,k

(λ ∗ (Si[n]− S∗
i [n]))

2

︸ ︷︷ ︸
≡e2i [n]

(9)

18 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 18

where the last approximation corresponds to transitioning to discrete time. To avoid non-locality,

SuperSpike relies on a form of random BP to propagate error signals directly from the output

layer to the hidden units. In deep networks we expect this coarse approximation to cause problems

for learning. In such cases it may be important to compensate for layer-specific delays or to use

entirely different approaches for credit assignment (cf. Section V-C). Since hidden layers use the

same learning rule as the output layer, in the following we focus on a network without hidden

layer to illustrate the online character of the rule.

To perform online gradient descent on L, we compute the gradients of the squared output error

signals e2i [n] at each time step n. Here we first encounter the derivative ∂
∂Wij

λ ∗ Si[n]. Because

the (discrete) convolution is a linear operator, this expression simplifies to λ∗ ∂Si[n]
∂Wij

. To compute

derivatives of the neuron’s output spike train of the form ∂Si[n]
∂Wij

we differentiate the network

dynamics (Equations (4) and (5)) and obtain

∂Si[n+ 1]

∂Wij
= Θ′(Ui[n+ 1]− ϑ)

[
∂Ui[n+ 1]

∂Wij

]
(10)

∂Ui[n+ 1]

∂Wij
= β

∂Ui[n]

∂Wij
+

∂Ii[n]

∂Wij
− ∂Si[n]

∂Wij
(11)

∂Ii[n+ 1]

∂Wij
= α

∂Ii[n]

∂Wij
+ Sj [n] (12)

The above equations define a dynamical system which, given the starting conditions Si[0] =

Ui[0] = Ii[0] = 0, can be simulated online and forward in time to produce all relevant derivatives.

Importantly, the convolution with λ is implemented similarly to the above equations (11) and

(12) as a double integrator (see [2] for details). These equations are conceptually similar to those

derived under RTRL, (8). Crucially, to arrive at useful SGs, SuperSpike makes two approxima-

tions. First, Θ′ is replaced by a smooth surrogate derivative σ′(U [n]−ϑ) (cf. Fig. 3). Second, the

reset term with the negative sign in Equation (11) is dropped, which empirically leads to better

results. With these definitions in hand, the final weight updates are given by

∆Wij [n] ∝ ei[n] λ ∗
[
σ′(Ui[n]− ϑ)

∂Ui[n]

∂Wij

]
(13)

where ei[n] ≡ λ ∗ (Si − S∗
i). These weight updates depend only on local quantities and error

signals (Box. 3).

Above, we have considered a simple two-layer network (cf. Fig. 2) without recurrent con-

nections. If we were to apply the same strategy to compute updates in a RCNN or a network

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 19

with an additional hidden layer, the equations would become more complicated and non-local.

SuperSpike applied to multi-layer networks sidesteps this issue by propagating error signals from

the output layer directly to the hidden units as in random BP (cf. Section V-A; Fig. 5c; [37–39]).

For networks with additional hidden layers, the output errors are simply broadcast through either

random or structured weights A

∆W
(l)
ij [n] ∝

[∑
k

A
(l)
ik ek[n]

]
λ ∗

[
σ′(U

(l)
i [n]− ϑ)

∂U
(l)
i [n]

∂W
(l)
ij

]
(14)

Thus, SuperSpike achieves temporal credit assignment by propagating all relevant quantities

forward in time through the neuronal dynamics (Eqns. (11) and (12)), while it relies on random

BP to perform spatial credit assignment.

While the work by Zenke and Ganguli [2] was centered around feed-forward networks, Bellec

et al. [15] show that similar biologically plausible three factors rule can also be used to train

RCNNs efficiently.

C. Learning using local errors

In practice, the performance of SuperSpike does not scale favorably for large multilayer

networks. The scalability of SuperSpike can be improved by introducing local errors, as described

here.

Multi-layer neural networks are hierarchical feature extractors. Through successive linear pro-

jections and point-wise non-linearities, neurons become tuned (respond most strongly) to partic-

ular spatio-temporal features in the input. While the best features are those that take into account

the subsequent processing stages and which are learned to minimize the final error (as the features

learned using BP do), high-quality features can also be obtained by more local methods. The

non-local component of the weight update equation (Eq. (6)) is the error term δ
(l)
i [n]. Instead of

obtaining this error term through BP, we require that it be generated using information local to

the layer. One way of achieving this is to define a layer-wise loss L(l)(y(l)[n]) and use this local

loss to obtain the errors. In such a local learning setting, the local errors δ(l) become:

δ
(l)
i [n] = σ′

(
a
(l)
i [n]

) d

dy
(l)
i [n]

L(l)(y(l)[n]) where L(l)(y(l)[n]) ≡ L(G(l)y(l)[n], ŷ(l)[n]) (15)

with ŷ(l)[n] a pseudo-target for layer l, and G(l) a fixed random matrix that projects the activity

vector at layer l to a vector having the same dimension as the pseudo-target. In essence, this

19IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 18

where the last approximation corresponds to transitioning to discrete time. To avoid non-locality,

SuperSpike relies on a form of random BP to propagate error signals directly from the output

layer to the hidden units. In deep networks we expect this coarse approximation to cause problems

for learning. In such cases it may be important to compensate for layer-specific delays or to use

entirely different approaches for credit assignment (cf. Section V-C). Since hidden layers use the

same learning rule as the output layer, in the following we focus on a network without hidden

layer to illustrate the online character of the rule.

To perform online gradient descent on L, we compute the gradients of the squared output error

signals e2i [n] at each time step n. Here we first encounter the derivative ∂
∂Wij

λ ∗ Si[n]. Because

the (discrete) convolution is a linear operator, this expression simplifies to λ∗ ∂Si[n]
∂Wij

. To compute

derivatives of the neuron’s output spike train of the form ∂Si[n]
∂Wij

we differentiate the network

dynamics (Equations (4) and (5)) and obtain

∂Si[n+ 1]

∂Wij
= Θ′(Ui[n+ 1]− ϑ)

[
∂Ui[n+ 1]

∂Wij

]
(10)

∂Ui[n+ 1]

∂Wij
= β

∂Ui[n]

∂Wij
+

∂Ii[n]

∂Wij
− ∂Si[n]

∂Wij
(11)

∂Ii[n+ 1]

∂Wij
= α

∂Ii[n]

∂Wij
+ Sj [n] (12)

The above equations define a dynamical system which, given the starting conditions Si[0] =

Ui[0] = Ii[0] = 0, can be simulated online and forward in time to produce all relevant derivatives.

Importantly, the convolution with λ is implemented similarly to the above equations (11) and

(12) as a double integrator (see [2] for details). These equations are conceptually similar to those

derived under RTRL, (8). Crucially, to arrive at useful SGs, SuperSpike makes two approxima-

tions. First, Θ′ is replaced by a smooth surrogate derivative σ′(U [n]−ϑ) (cf. Fig. 3). Second, the

reset term with the negative sign in Equation (11) is dropped, which empirically leads to better

results. With these definitions in hand, the final weight updates are given by

∆Wij [n] ∝ ei[n] λ ∗
[
σ′(Ui[n]− ϑ)

∂Ui[n]

∂Wij

]
(13)

where ei[n] ≡ λ ∗ (Si − S∗
i). These weight updates depend only on local quantities and error

signals (Box. 3).

Above, we have considered a simple two-layer network (cf. Fig. 2) without recurrent con-

nections. If we were to apply the same strategy to compute updates in a RCNN or a network

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 19

with an additional hidden layer, the equations would become more complicated and non-local.

SuperSpike applied to multi-layer networks sidesteps this issue by propagating error signals from

the output layer directly to the hidden units as in random BP (cf. Section V-A; Fig. 5c; [37–39]).

For networks with additional hidden layers, the output errors are simply broadcast through either

random or structured weights A

∆W
(l)
ij [n] ∝

[∑
k

A
(l)
ik ek[n]

]
λ ∗

[
σ′(U

(l)
i [n]− ϑ)

∂U
(l)
i [n]

∂W
(l)
ij

]
(14)

Thus, SuperSpike achieves temporal credit assignment by propagating all relevant quantities

forward in time through the neuronal dynamics (Eqns. (11) and (12)), while it relies on random

BP to perform spatial credit assignment.

While the work by Zenke and Ganguli [2] was centered around feed-forward networks, Bellec

et al. [15] show that similar biologically plausible three factors rule can also be used to train

RCNNs efficiently.

C. Learning using local errors

In practice, the performance of SuperSpike does not scale favorably for large multilayer

networks. The scalability of SuperSpike can be improved by introducing local errors, as described

here.

Multi-layer neural networks are hierarchical feature extractors. Through successive linear pro-

jections and point-wise non-linearities, neurons become tuned (respond most strongly) to partic-

ular spatio-temporal features in the input. While the best features are those that take into account

the subsequent processing stages and which are learned to minimize the final error (as the features

learned using BP do), high-quality features can also be obtained by more local methods. The

non-local component of the weight update equation (Eq. (6)) is the error term δ
(l)
i [n]. Instead of

obtaining this error term through BP, we require that it be generated using information local to

the layer. One way of achieving this is to define a layer-wise loss L(l)(y(l)[n]) and use this local

loss to obtain the errors. In such a local learning setting, the local errors δ(l) become:

δ
(l)
i [n] = σ′

(
a
(l)
i [n]

) d

dy
(l)
i [n]

L(l)(y(l)[n]) where L(l)(y(l)[n]) ≡ L(G(l)y(l)[n], ŷ(l)[n]) (15)

with ŷ(l)[n] a pseudo-target for layer l, and G(l) a fixed random matrix that projects the activity

vector at layer l to a vector having the same dimension as the pseudo-target. In essence, this

20 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 20

Fig. 6: Deep Continuous Local Learning (DECOLLE) with spikes [4], applied to the event-based
DVSGestures dataset. The feed-forward weights (green) of a three layer convolutional SNN are trained
with SG using local errors generated using fixed random projections to a local classifier. Learning in
DECOLLE scales linearly with the number of neurons thanks to local rate-based cost functions formed
by spike-based basis functions. The circular arrows indicate recurrence due to the statefulness of the LIF
dynamics (no recurrent synaptic connections were used here) and are not trained. This SNN outperforms
BPTT methods [13], requiring fewer training iterations [4] compared to other approaches.

formulation assumes that an auxiliary random layer is attached to layer l and the goal is to

modify W(l) so as to minimize the discrepancy between the auxiliary random layer’s output

and the pseudo-target. The simplest choice for the pseudo-target is to use the top-layer target.

This forces each layer to learn a set of features that are able to match the top-layer target after

undergoing a fixed random linear projection. Each layer builds on the features learned by the

layer below it, and we empirically observe that higher layers are able to learn higher-quality

features that allow their random and fixed auxiliary layers to better match the target [40].

A related approach was explored with spiking neural networks [41], where separate networks

provided high-dimensional temporal signals to improve learning. Local errors were recently used

in SNNs in combination with the SuperSpike (cf. Section V-B) forward method to overcome

the temporal credit assignment problem [4]. As in SuperSpike, the SNN model is simplified by

using a feedforward structure, and omitting the refractory dynamics in the optimization. However,

the cost function was defined to operate locally on the instantaneous rates of each layer. This

simplification results in a forward method whose space complexity scales as O(N) (instead of

O(N3) for the forward method, O(N2) for SuperSpike, or O(NT) for the backward method),

while still making use of spiking neural dynamics. Thus the method constitutes a highly efficient

synaptic plasticity rule for multi-layer SNNs. Furthermore, the simplifications enable the use

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 21

of existing automatic differentiation methods in machine learning frameworks to systematically

derive synaptic plasticity rules from task-relevant cost functions and neural dynamics (see [4]

and included tutorials), making DECOLLE easy to implement. This approach was benchmarked

on the DVS Gestures dataset (Fig. 6), and performs on par with standard BP or BPTT rules.

D. Learning using gradients of spike times

Difficulties in training SNNs stem from the discrete nature of the quantities of interest such

as the number of spikes in a particular interval. The derivatives of these discrete quantities are

zero almost everywhere which necessitates the use of SG methods. Alternatively, we can choose

to use spike-based quantities that have well defined, smooth derivatives. One such quantity is

spike times. This capitalizes on the continuous-time nature of SNNs and results in highly sparse

network activity as the emission time of even a single spike can encode significant information.

Just as importantly, spike times are continuous quantities that can be made to depend smoothly

on the neuron’s input. Working with spike times is thus a complementary approach to SG but

which achieves the same goal: obtaining a smooth chain of derivatives between the network’s

outputs and inputs. For this example, we use non-leaky integrate and fire neurons described by:

dUi

dt
= Ii with Ii =

∑
j

Wij

∑
r

Θ(t− tri) exp (−(t− tri)) (16)

where tri is the time of the rth spike from neuron j, and Θ is the Heaviside step function.

Consider the simple exclusive or (XOR) problem in the temporal domain: A network receives

two spikes, one from each of two different sources. Each spike can either be “early” or “late”.

The network has to learn to distinguish between the case in which the spikes are either both

early or both late, and the case where one spike is early and the other is late (Fig. 7a). When

designing a SNN, there is significant freedom in how the network input and output are encoded.

In this case, we use a first-to-spike code in which we have two output neurons and the binary

classification result is represented by the output neuron that spikes first. Figure 7b shows the

network’s response after training (see [34] for details on the training process). For the first input

class (early/late or late/early), one output neuron spikes first and for the other class (early/early

or late/late), the other output neuron spikes first.

21IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 20

Fig. 6: Deep Continuous Local Learning (DECOLLE) with spikes [4], applied to the event-based
DVSGestures dataset. The feed-forward weights (green) of a three layer convolutional SNN are trained
with SG using local errors generated using fixed random projections to a local classifier. Learning in
DECOLLE scales linearly with the number of neurons thanks to local rate-based cost functions formed
by spike-based basis functions. The circular arrows indicate recurrence due to the statefulness of the LIF
dynamics (no recurrent synaptic connections were used here) and are not trained. This SNN outperforms
BPTT methods [13], requiring fewer training iterations [4] compared to other approaches.

formulation assumes that an auxiliary random layer is attached to layer l and the goal is to

modify W(l) so as to minimize the discrepancy between the auxiliary random layer’s output

and the pseudo-target. The simplest choice for the pseudo-target is to use the top-layer target.

This forces each layer to learn a set of features that are able to match the top-layer target after

undergoing a fixed random linear projection. Each layer builds on the features learned by the

layer below it, and we empirically observe that higher layers are able to learn higher-quality

features that allow their random and fixed auxiliary layers to better match the target [40].

A related approach was explored with spiking neural networks [41], where separate networks

provided high-dimensional temporal signals to improve learning. Local errors were recently used

in SNNs in combination with the SuperSpike (cf. Section V-B) forward method to overcome

the temporal credit assignment problem [4]. As in SuperSpike, the SNN model is simplified by

using a feedforward structure, and omitting the refractory dynamics in the optimization. However,

the cost function was defined to operate locally on the instantaneous rates of each layer. This

simplification results in a forward method whose space complexity scales as O(N) (instead of

O(N3) for the forward method, O(N2) for SuperSpike, or O(NT) for the backward method),

while still making use of spiking neural dynamics. Thus the method constitutes a highly efficient

synaptic plasticity rule for multi-layer SNNs. Furthermore, the simplifications enable the use

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 21

of existing automatic differentiation methods in machine learning frameworks to systematically

derive synaptic plasticity rules from task-relevant cost functions and neural dynamics (see [4]

and included tutorials), making DECOLLE easy to implement. This approach was benchmarked

on the DVS Gestures dataset (Fig. 6), and performs on par with standard BP or BPTT rules.

D. Learning using gradients of spike times

Difficulties in training SNNs stem from the discrete nature of the quantities of interest such

as the number of spikes in a particular interval. The derivatives of these discrete quantities are

zero almost everywhere which necessitates the use of SG methods. Alternatively, we can choose

to use spike-based quantities that have well defined, smooth derivatives. One such quantity is

spike times. This capitalizes on the continuous-time nature of SNNs and results in highly sparse

network activity as the emission time of even a single spike can encode significant information.

Just as importantly, spike times are continuous quantities that can be made to depend smoothly

on the neuron’s input. Working with spike times is thus a complementary approach to SG but

which achieves the same goal: obtaining a smooth chain of derivatives between the network’s

outputs and inputs. For this example, we use non-leaky integrate and fire neurons described by:

dUi

dt
= Ii with Ii =

∑
j

Wij

∑
r

Θ(t− tri) exp (−(t− tri)) (16)

where tri is the time of the rth spike from neuron j, and Θ is the Heaviside step function.

Consider the simple exclusive or (XOR) problem in the temporal domain: A network receives

two spikes, one from each of two different sources. Each spike can either be “early” or “late”.

The network has to learn to distinguish between the case in which the spikes are either both

early or both late, and the case where one spike is early and the other is late (Fig. 7a). When

designing a SNN, there is significant freedom in how the network input and output are encoded.

In this case, we use a first-to-spike code in which we have two output neurons and the binary

classification result is represented by the output neuron that spikes first. Figure 7b shows the

network’s response after training (see [34] for details on the training process). For the first input

class (early/late or late/early), one output neuron spikes first and for the other class (early/early

or late/late), the other output neuron spikes first.

22 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 22

hidden
layer

intput
layer

class
0

class
0

class
1

class
1

output
layer

input
patterns

time

time

time

time

(a)

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

0 1 2 3 4 5 6 7
t(s)

0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
t(s)

0.5
0.0
0.5
1.0

Hidden layer neurons Output layer neurons

early/late

late/early

late/late

early/early

(b)

Fig. 7: Temporal XOR problem. (a) An SNN with one hidden layer. Each input neuron emits one spike
which can either be late or early resulting in four possible input patterns that should be classified into two
classes. (b) For the four input spike patterns (one per row), the right plots show the membrane potentials
of the two output neurons, while the left plots show the membrane potentials of the four hidden neurons.
Arrows at the top of the plot indicate output spikes from the layer, while arrows at the bottom indicate input
spikes. The output spikes of the hidden layer are the input spikes of the output layer. The classification
result is encoded in the identity of the output neuron that spikes first.

.

VI. CONCLUSION

We have outlined how discrete-time SNNs can be studied within the framework of RNNs and

discussed successful approaches for training them. We have specifically focused on SG approaches

for two reasons: SG approaches are able to train SNNs to unprecedented performance levels on

a range of real-world problems. This transition marks the beginning of an exciting time in which

SNNs will become increasingly interesting for applications which were previously dominated by

RNNs; SGs provide a framework that ties together ideas from machine learning, computational

neurosciences, and neuromorphic computing. We emphasize that, although SGs are well defined in

the discrete-time framework studied here, the theoretical foundations of SGs for SNNs remain an

open problem, including the generalization of spike-based BPTT to continuous-time dynamics

and the optimal choice of smooth activation functions. From the viewpoint of computational

neuroscience, the approaches presented in this paper are appealing because several of them are

related to “three-factor” plasticity rules which are an important class of rules believed to underlie

synaptic plasticity in the brain. Finally, for the neuromorphic community, SG methods provide a

way to learn under various constraints on communication and storage which makes SG methods

highly relevant for learning on custom low-power neuromorphic devices.

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 23

The spectacular successes of modern ANNs were enabled by algorithmic and hardware ad-

vances that made it possible to efficiently train large ANNs on vast amounts of data. With temporal

coding, SNNs are universal function approximators that are potentially far more powerful than

ANNs with sigmoidal nonlinearities. Unlike large-scale ANNs, which had to wait for several

decades until the necessary computational resources were available for training them, we currently

have the necessary resources, whether in the form of mainstream compute devices such as CPUs

or GPUs, or custom neuromorphic devices, to train and deploy large SNNs. The fact that SNNs

are less widely used than ANNs is thus primarily due to the algorithmic issue of trainability. In

this article, we have provided an overview of various exciting developments that are gradually

addressing the issues encountered when training SNNs. Fully addressing these issues would have

immediate and wide-ranging implications, both technologically, and in relation to learning in

biological brains.

ACKNOWLEDGMENTS

This work was supported by the Intel Corporation (EN); the National Science Foundation

under grant 1640081 (EN); the Swiss National Science Foundation Early Postdoc Mobility Grant

P2ZHP2 164960 (HM) ; the Wellcome Trust [110124/Z/15/Z] (FZ).

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[2] F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks,”

Neural Computation, vol. 30, no. 6, pp. 1514–1541, Apr. 2018.

[3] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-term memory and

Learning-to-learn in networks of spiking neurons,” in Advances in Neural Information Processing

Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

Eds. Curran Associates, Inc., 2018, pp. 795–805.

[4] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity for deep continuous local learning,” arXiv

preprint arXiv:1812.10766, 2018.

[5] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep learning in

spiking neural networks,” Neural Networks, Dec. 2018.

[6] R. Gütig, “To spike, or when to spike?” Current Opinion in Neurobiology, vol. 25, pp. 134–139, Apr.

2014.

[7] R.-M. Memmesheimer, R. Rubin, B. Ölveczky, and H. Sompolinsky, “Learning Precisely Timed

Spikes,” Neuron, vol. 82, no. 4, pp. 925–938, May 2014.

23IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 22

hidden
layer

intput
layer

class
0

class
0

class
1

class
1

output
layer

input
patterns

time

time

time

time

(a)

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
0.5
0.0
0.5
1.0

0 1 2 3 4 5 6 7
t(s)

0.5
0.0
0.5
1.0

vm
em

0 1 2 3 4 5 6 7
t(s)

0.5
0.0
0.5
1.0

Hidden layer neurons Output layer neurons

early/late

late/early

late/late

early/early

(b)

Fig. 7: Temporal XOR problem. (a) An SNN with one hidden layer. Each input neuron emits one spike
which can either be late or early resulting in four possible input patterns that should be classified into two
classes. (b) For the four input spike patterns (one per row), the right plots show the membrane potentials
of the two output neurons, while the left plots show the membrane potentials of the four hidden neurons.
Arrows at the top of the plot indicate output spikes from the layer, while arrows at the bottom indicate input
spikes. The output spikes of the hidden layer are the input spikes of the output layer. The classification
result is encoded in the identity of the output neuron that spikes first.

.

VI. CONCLUSION

We have outlined how discrete-time SNNs can be studied within the framework of RNNs and

discussed successful approaches for training them. We have specifically focused on SG approaches

for two reasons: SG approaches are able to train SNNs to unprecedented performance levels on

a range of real-world problems. This transition marks the beginning of an exciting time in which

SNNs will become increasingly interesting for applications which were previously dominated by

RNNs; SGs provide a framework that ties together ideas from machine learning, computational

neurosciences, and neuromorphic computing. We emphasize that, although SGs are well defined in

the discrete-time framework studied here, the theoretical foundations of SGs for SNNs remain an

open problem, including the generalization of spike-based BPTT to continuous-time dynamics

and the optimal choice of smooth activation functions. From the viewpoint of computational

neuroscience, the approaches presented in this paper are appealing because several of them are

related to “three-factor” plasticity rules which are an important class of rules believed to underlie

synaptic plasticity in the brain. Finally, for the neuromorphic community, SG methods provide a

way to learn under various constraints on communication and storage which makes SG methods

highly relevant for learning on custom low-power neuromorphic devices.

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 23

The spectacular successes of modern ANNs were enabled by algorithmic and hardware ad-

vances that made it possible to efficiently train large ANNs on vast amounts of data. With temporal

coding, SNNs are universal function approximators that are potentially far more powerful than

ANNs with sigmoidal nonlinearities. Unlike large-scale ANNs, which had to wait for several

decades until the necessary computational resources were available for training them, we currently

have the necessary resources, whether in the form of mainstream compute devices such as CPUs

or GPUs, or custom neuromorphic devices, to train and deploy large SNNs. The fact that SNNs

are less widely used than ANNs is thus primarily due to the algorithmic issue of trainability. In

this article, we have provided an overview of various exciting developments that are gradually

addressing the issues encountered when training SNNs. Fully addressing these issues would have

immediate and wide-ranging implications, both technologically, and in relation to learning in

biological brains.

ACKNOWLEDGMENTS

This work was supported by the Intel Corporation (EN); the National Science Foundation

under grant 1640081 (EN); the Swiss National Science Foundation Early Postdoc Mobility Grant

P2ZHP2 164960 (HM) ; the Wellcome Trust [110124/Z/15/Z] (FZ).

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[2] F. Zenke and S. Ganguli, “SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks,”

Neural Computation, vol. 30, no. 6, pp. 1514–1541, Apr. 2018.

[3] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-term memory and

Learning-to-learn in networks of spiking neurons,” in Advances in Neural Information Processing

Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

Eds. Curran Associates, Inc., 2018, pp. 795–805.

[4] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity for deep continuous local learning,” arXiv

preprint arXiv:1812.10766, 2018.

[5] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep learning in

spiking neural networks,” Neural Networks, Dec. 2018.

[6] R. Gütig, “To spike, or when to spike?” Current Opinion in Neurobiology, vol. 25, pp. 134–139, Apr.

2014.

[7] R.-M. Memmesheimer, R. Rubin, B. Ölveczky, and H. Sompolinsky, “Learning Precisely Timed

Spikes,” Neuron, vol. 82, no. 4, pp. 925–938, May 2014.

24 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 24

[8] N. Anwani and B. Rajendran, “NormAD-normalized approximate descent based supervised learning

rule for spiking neurons,” in Neural Networks (IJCNN), 2015 International Joint Conference on.

IEEE, 2015, pp. 1–8.

[9] A. Gilra and W. Gerstner, “Predicting non-linear dynamics by stable local learning in a recurrent

spiking neural network,” eLife Sciences, vol. 6, p. e28295, Nov. 2017. [Online]. Available:

https://elifesciences.org/articles/28295

[10] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks with FORCE training,”

Nature Communications, vol. 8, no. 1, p. 2208, Dec. 2017.

[11] K. Boahen, “A neuromorph’s prospectus,” Computing in Science Engineering, vol. 19, no. 2, pp.

14–28, Mar. 2017.

[12] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single neurons to

networks and models of cognition. Cambridge University Press, 2014.

[13] S. B. Shrestha and G. Orchard, “SLAYER: Spike Layer Error Reassignment in Time,” in Advances

in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 1419–1428.

[14] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural

networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[15] G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein, and W. Maass, “Biologically inspired

alternatives to backpropagation through time for learning in recurrent neural nets,” arXiv:1901.09049

[cs], Jan. 2019. [Online]. Available: http://arxiv.org/abs/1901.09049

[16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized Neural Net-

works: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1,”

arXiv:1602.02830 [cs], Feb. 2016, arXiv: 1602.02830.

[17] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating Gradients Through Stochastic

Neurons for Conditional Computation,” arXiv:1308.3432 [cs], Aug. 2013, arXiv: 1308.3432.

[18] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg,

J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner,

and D. S. Modha, “Convolutional networks for fast, energy-efficient neuromorphic computing,” Proc

Natl Acad Sci U S A, vol. 113, no. 41, pp. 11 441–11 446, Oct. 2016.

[19] S. M. Bohte, “Error-Backpropagation in Networks of Fractionally Predictive Spiking Neurons,” in

Artificial Neural Networks and Machine Learning – ICANN 2011, ser. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Jun. 2011, pp. 60–68.

[20] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” arXiv preprint

arXiv:1810.08646, 2018.

[21] L. F. Abbott, B. DePasquale, and R.-M. Memmesheimer, “Building functional networks of spiking

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 25

model neurons,” Nat Neurosci, vol. 19, no. 3, pp. 350–355, Mar. 2016.

[22] D. Huh and T. J. Sejnowski, “Gradient Descent for Spiking Neural Networks,” in Advances in Neural

Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 1440–1450.

[23] D. Ackley, G. Hinton, and T. Sejnowski, “A learning algorithm for Boltzmann machines,” Cognitive

Science: A Multidisciplinary Journal, vol. 9, no. 1, pp. 147–169, 1985.

[24] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal Spike-Timing-Dependent Plasticity

for Precise Action Potential Firing in Supervised Learning,” Neural Computation, vol. 18, no. 6, pp.

1318–1348, Apr. 2006.

[25] B. Gardner, I. Sporea, and A. Grüning, “Learning Spatiotemporally Encoded Pattern Transformations

in Structured Spiking Neural Networks,” Neural Comput, vol. 27, no. 12, pp. 2548–2586, Oct. 2015.

[26] J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning with segregated dendrites,”

eLife Sciences, vol. 6, p. e22901, Dec. 2017.

[27] J. Brea, W. Senn, and J.-P. Pfister, “Matching Recall and Storage in Sequence Learning with Spiking

Neural Networks,” J. Neurosci., vol. 33, no. 23, pp. 9565–9575, Jun. 2013.

[28] D. J. Rezende and W. Gerstner, “Stochastic variational learning in recurrent spiking networks,” Front.

Comput. Neurosci, vol. 8, p. 38, 2014.

[29] H. Mostafa and G. Cauwenberghs, “A learning framework for winner-take-all networks with stochastic

synapses,” Neural computation, vol. 30, no. 6, pp. 1542–1572, 2018.

[30] E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif neurons,” arXiv preprint

arXiv:1510.08829, 2015.

[31] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven random back-propagation:

Enabling neuromorphic deep learning machines,” Frontiers in Neuroscience, vol. 11, p. 324, 2017.

[32] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks using backpropaga-

tion,” Frontiers in Neuroscience, vol. 10, 2016.

[33] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in temporally encoded networks

of spiking neurons,” Neurocomputing, vol. 48, no. 1, pp. 17–37, 2002.

[34] H. Mostafa, “Supervised learning based on temporal coding in spiking neural networks,” IEEE

transactions on neural networks and learning systems, vol. 29, no. 7, pp. 3227–3235, 2018.

[35] P. O’Connor, E. Gavves, and M. Welling, “Temporally efficient deep learning with spikes,” arXiv

preprint arXiv:1706.04159, 2017.

[36] S. Woźniak, A. Pantazi, and E. Eleftheriou, “Deep networks incorporating spiking neural dynamics,”

arXiv preprint arXiv:1812.07040, 2018.

[37] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic feedback weights

support error backpropagation for deep learning,” Nature Communications, vol. 7, 2016.

25IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 24

[8] N. Anwani and B. Rajendran, “NormAD-normalized approximate descent based supervised learning

rule for spiking neurons,” in Neural Networks (IJCNN), 2015 International Joint Conference on.

IEEE, 2015, pp. 1–8.

[9] A. Gilra and W. Gerstner, “Predicting non-linear dynamics by stable local learning in a recurrent

spiking neural network,” eLife Sciences, vol. 6, p. e28295, Nov. 2017. [Online]. Available:

https://elifesciences.org/articles/28295

[10] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks with FORCE training,”

Nature Communications, vol. 8, no. 1, p. 2208, Dec. 2017.

[11] K. Boahen, “A neuromorph’s prospectus,” Computing in Science Engineering, vol. 19, no. 2, pp.

14–28, Mar. 2017.

[12] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From single neurons to

networks and models of cognition. Cambridge University Press, 2014.

[13] S. B. Shrestha and G. Orchard, “SLAYER: Spike Layer Error Reassignment in Time,” in Advances

in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 1419–1428.

[14] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural

networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989.

[15] G. Bellec, F. Scherr, E. Hajek, D. Salaj, R. Legenstein, and W. Maass, “Biologically inspired

alternatives to backpropagation through time for learning in recurrent neural nets,” arXiv:1901.09049

[cs], Jan. 2019. [Online]. Available: http://arxiv.org/abs/1901.09049

[16] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized Neural Net-

works: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1,”

arXiv:1602.02830 [cs], Feb. 2016, arXiv: 1602.02830.

[17] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating Gradients Through Stochastic

Neurons for Conditional Computation,” arXiv:1308.3432 [cs], Aug. 2013, arXiv: 1308.3432.

[18] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg,

J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D. Flickner,

and D. S. Modha, “Convolutional networks for fast, energy-efficient neuromorphic computing,” Proc

Natl Acad Sci U S A, vol. 113, no. 41, pp. 11 441–11 446, Oct. 2016.

[19] S. M. Bohte, “Error-Backpropagation in Networks of Fractionally Predictive Spiking Neurons,” in

Artificial Neural Networks and Machine Learning – ICANN 2011, ser. Lecture Notes in Computer

Science. Springer, Berlin, Heidelberg, Jun. 2011, pp. 60–68.

[20] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” arXiv preprint

arXiv:1810.08646, 2018.

[21] L. F. Abbott, B. DePasquale, and R.-M. Memmesheimer, “Building functional networks of spiking

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 25

model neurons,” Nat Neurosci, vol. 19, no. 3, pp. 350–355, Mar. 2016.

[22] D. Huh and T. J. Sejnowski, “Gradient Descent for Spiking Neural Networks,” in Advances in Neural

Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-

Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 1440–1450.

[23] D. Ackley, G. Hinton, and T. Sejnowski, “A learning algorithm for Boltzmann machines,” Cognitive

Science: A Multidisciplinary Journal, vol. 9, no. 1, pp. 147–169, 1985.

[24] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner, “Optimal Spike-Timing-Dependent Plasticity

for Precise Action Potential Firing in Supervised Learning,” Neural Computation, vol. 18, no. 6, pp.

1318–1348, Apr. 2006.

[25] B. Gardner, I. Sporea, and A. Grüning, “Learning Spatiotemporally Encoded Pattern Transformations

in Structured Spiking Neural Networks,” Neural Comput, vol. 27, no. 12, pp. 2548–2586, Oct. 2015.

[26] J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning with segregated dendrites,”

eLife Sciences, vol. 6, p. e22901, Dec. 2017.

[27] J. Brea, W. Senn, and J.-P. Pfister, “Matching Recall and Storage in Sequence Learning with Spiking

Neural Networks,” J. Neurosci., vol. 33, no. 23, pp. 9565–9575, Jun. 2013.

[28] D. J. Rezende and W. Gerstner, “Stochastic variational learning in recurrent spiking networks,” Front.

Comput. Neurosci, vol. 8, p. 38, 2014.

[29] H. Mostafa and G. Cauwenberghs, “A learning framework for winner-take-all networks with stochastic

synapses,” Neural computation, vol. 30, no. 6, pp. 1542–1572, 2018.

[30] E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif neurons,” arXiv preprint

arXiv:1510.08829, 2015.

[31] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven random back-propagation:

Enabling neuromorphic deep learning machines,” Frontiers in Neuroscience, vol. 11, p. 324, 2017.

[32] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks using backpropaga-

tion,” Frontiers in Neuroscience, vol. 10, 2016.

[33] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in temporally encoded networks

of spiking neurons,” Neurocomputing, vol. 48, no. 1, pp. 17–37, 2002.

[34] H. Mostafa, “Supervised learning based on temporal coding in spiking neural networks,” IEEE

transactions on neural networks and learning systems, vol. 29, no. 7, pp. 3227–3235, 2018.

[35] P. O’Connor, E. Gavves, and M. Welling, “Temporally efficient deep learning with spikes,” arXiv

preprint arXiv:1706.04159, 2017.

[36] S. Woźniak, A. Pantazi, and E. Eleftheriou, “Deep networks incorporating spiking neural dynamics,”

arXiv preprint arXiv:1812.07040, 2018.

[37] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic feedback weights

support error backpropagation for deep learning,” Nature Communications, vol. 7, 2016.

26 IEEE SIGNAL PROCESSING MAGAZINE 1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 26

[38] A. Nøkland, “Direct feedback alignment provides learning in deep neural networks,” in Advances in

Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 1037–1045.

[39] P. Baldi and P. Sadowski, “A theory of local learning, the learning channel, and the optimality of

backpropagation,” Neural Networks, vol. 83, pp. 51–74, 2016.

[40] H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised learning using local errors,”

Frontiers in neuroscience, vol. 12, p. 608, 2018.

[41] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks with force training,”

Nature communications, vol. 8, no. 1, p. 2208, 2017.

VII. AUTHOR INFORMATION

Emre Neftci, UC Irvine (eneftci@uci.edu)

Dr. Neftci is an assistant professor in the department of Cognitive Sciences and Computer Science at UC

Irvine. He received his master’s degree in Physics at Ecole Polytechnique Federal de Lausanne (EPFL)

and his PhD in Neuroinformatics from the Institute of Neuroinformatics at the university of Zurich and

ETH Zurich in neuromorphic engineering. His current research explores the bridges between neuroscience

and machine learning, with the focus of theoretical and computational modeling of learning algorithms

that are best suited to neuromorphic hardware and non-von Neumann computing architectures.

Hesham Mostafa, Intel (hesham.mostafa@intel.com)

Dr. Mostafa is a research scientist at the office of the CTO at Intel’s AI products group. He obtained a

master’s degree in electrical engineering from the Technical University of Munich and a PhD in Neuroin-

formatics from the Institute of Neuroinformatics at the university of Zurich and ETH Zurich. His research

interests include combining ideas from machine learning and computational neuroscience for developing

biologically-inspired and hardware-efficient learning and optimization algorithms, and physically imple-

menting these algorithms using CMOS and novel device technologies.

Friedemann Zenke, Friedrich Miescher Institute (friedemann.zenke@fmi.ch)

Dr. Zenke is a junior group leader at the Friedrich Miescher Institute for Biomedical Research in Basel,

Switzerland. He studied physics at the University of Bonn, Germany and the Australian National University

in Canberra, Australia and later worked on his PhD in the laboratory of Wulfram Gerstner at the EPFL in

Switzerland on the interaction of synaptic and homeostatic plasticity in spiking neural network models. He

then joined the group of Surya Ganguli at Stanford University, USA as a post-doctoral fellow where he

used machine learning approaches to explore learning and memory formation in biologically inspired neural

networks. Consequently, he joined the laboratory of Tim P. Vogels at the University of Oxford, UK as a

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 27

Henry Wellcome fellow to study the connection between network dynamics in models and neurobiology.

Dr. Zenke continues to study learning in biologically inspired network models with a focus on deep credit

assignment and unsupervised learning.

27IEEE SIGNAL PROCESSING MAGAZINE1053-5888/18©2018IEEE

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 26

[38] A. Nøkland, “Direct feedback alignment provides learning in deep neural networks,” in Advances in

Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and

R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 1037–1045.

[39] P. Baldi and P. Sadowski, “A theory of local learning, the learning channel, and the optimality of

backpropagation,” Neural Networks, vol. 83, pp. 51–74, 2016.

[40] H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised learning using local errors,”

Frontiers in neuroscience, vol. 12, p. 608, 2018.

[41] W. Nicola and C. Clopath, “Supervised learning in spiking neural networks with force training,”

Nature communications, vol. 8, no. 1, p. 2208, 2017.

VII. AUTHOR INFORMATION

Emre Neftci, UC Irvine (eneftci@uci.edu)

Dr. Neftci is an assistant professor in the department of Cognitive Sciences and Computer Science at UC

Irvine. He received his master’s degree in Physics at Ecole Polytechnique Federal de Lausanne (EPFL)

and his PhD in Neuroinformatics from the Institute of Neuroinformatics at the university of Zurich and

ETH Zurich in neuromorphic engineering. His current research explores the bridges between neuroscience

and machine learning, with the focus of theoretical and computational modeling of learning algorithms

that are best suited to neuromorphic hardware and non-von Neumann computing architectures.

Hesham Mostafa, Intel (hesham.mostafa@intel.com)

Dr. Mostafa is a research scientist at the office of the CTO at Intel’s AI products group. He obtained a

master’s degree in electrical engineering from the Technical University of Munich and a PhD in Neuroin-

formatics from the Institute of Neuroinformatics at the university of Zurich and ETH Zurich. His research

interests include combining ideas from machine learning and computational neuroscience for developing

biologically-inspired and hardware-efficient learning and optimization algorithms, and physically imple-

menting these algorithms using CMOS and novel device technologies.

Friedemann Zenke, Friedrich Miescher Institute (friedemann.zenke@fmi.ch)

Dr. Zenke is a junior group leader at the Friedrich Miescher Institute for Biomedical Research in Basel,

Switzerland. He studied physics at the University of Bonn, Germany and the Australian National University

in Canberra, Australia and later worked on his PhD in the laboratory of Wulfram Gerstner at the EPFL in

Switzerland on the interaction of synaptic and homeostatic plasticity in spiking neural network models. He

then joined the group of Surya Ganguli at Stanford University, USA as a post-doctoral fellow where he

used machine learning approaches to explore learning and memory formation in biologically inspired neural

networks. Consequently, he joined the laboratory of Tim P. Vogels at the University of Oxford, UK as a

IEEE SPM WHITE PAPER FOR THE SPECIAL ISSUE ON NEUROMORPHIC COMPUTING 27

Henry Wellcome fellow to study the connection between network dynamics in models and neurobiology.

Dr. Zenke continues to study learning in biologically inspired network models with a focus on deep credit

assignment and unsupervised learning.

